Gauss's continued fraction

Last updated

In complex analysis, Gauss's continued fraction is a particular class of continued fractions derived from hypergeometric functions. It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several important elementary functions, as well as some of the more complicated transcendental functions.

Contents

History

Lambert published several examples of continued fractions in this form in 1768, and both Euler and Lagrange investigated similar constructions, [1] but it was Carl Friedrich Gauss who utilized the algebra described in the next section to deduce the general form of this continued fraction, in 1813. [2]

Although Gauss gave the form of this continued fraction, he did not give a proof of its convergence properties. Bernhard Riemann [3] and L.W. Thomé [4] obtained partial results, but the final word on the region in which this continued fraction converges was not given until 1901, by Edward Burr Van Vleck. [5]

Derivation

Let be a sequence of analytic functions so that

for all , where each is a constant.

Then

Setting

So

Repeating this ad infinitum produces the continued fraction expression

In Gauss's continued fraction, the functions are hypergeometric functions of the form , , and , and the equations arise as identities between functions where the parameters differ by integer amounts. These identities can be proven in several ways, for example by expanding out the series and comparing coefficients, or by taking the derivative in several ways and eliminating it from the equations generated.

The series 0F1

The simplest case involves

Starting with the identity

we may take

giving

or

This expansion converges to the meromorphic function defined by the ratio of the two convergent series (provided, of course, that a is neither zero nor a negative integer).

The series 1F1

The next case involves

for which the two identities

are used alternately.

Let

etc.

This gives where , producing

or

Similarly

or

Since , setting a to 0 and replacing b + 1 with b in the first continued fraction gives a simplified special case:

The series 2F1

The final case involves

Again, two identities are used alternately.

These are essentially the same identity with a and b interchanged.

Let

etc.

This gives where , producing

or

Since , setting a to 0 and replacing c + 1 with c gives a simplified special case of the continued fraction:

Convergence properties

In this section, the cases where one or more of the parameters is a negative integer are excluded, since in these cases either the hypergeometric series are undefined or that they are polynomials so the continued fraction terminates. Other trivial exceptions are excluded as well.

In the cases and , the series converge everywhere so the fraction on the left hand side is a meromorphic function. The continued fractions on the right hand side will converge uniformly on any closed and bounded set that contains no poles of this function. [6]

In the case , the radius of convergence of the series is 1 and the fraction on the left hand side is a meromorphic function within this circle. The continued fractions on the right hand side will converge to the function everywhere inside this circle.

Outside the circle, the continued fraction represents the analytic continuation of the function to the complex plane with the positive real axis, from +1 to the point at infinity removed. In most cases +1 is a branch point and the line from +1 to positive infinity is a branch cut for this function. The continued fraction converges to a meromorphic function on this domain, and it converges uniformly on any closed and bounded subset of this domain that does not contain any poles. [7]

Applications

The series 0F1

We have

so

This particular expansion is known as Lambert's continued fraction and dates back to 1768. [8]

It easily follows that

The expansion of tanh can be used to prove that en is irrational for every non-zero integer n (which is alas not enough to prove that e is transcendental). The expansion of tan was used by both Lambert and Legendre to prove that π is irrational.

The Bessel function can be written

from which it follows

These formulas are also valid for every complex z.

The series 1F1

Since ,

With some manipulation, this can be used to prove the simple continued fraction representation of e ,

The error function erf (z), given by

can also be computed in terms of Kummer's hypergeometric function:

By applying the continued fraction of Gauss, a useful expansion valid for every complex number z can be obtained: [9]

A similar argument can be made to derive continued fraction expansions for the Fresnel integrals, for the Dawson function, and for the incomplete gamma function. A simpler version of the argument yields two useful continued fraction expansions of the exponential function. [10]

The series 2F1

From

It is easily shown [11] that the Taylor series expansion of arctan z in a neighborhood of zero is given by

The continued fraction of Gauss can be applied to this identity, yielding the expansion

which converges to the principal branch of the inverse tangent function on the cut complex plane, with the cut extending along the imaginary axis from i to the point at infinity, and from −i to the point at infinity. [12]

This particular continued fraction converges fairly quickly when z = 1, giving the value π/4 to seven decimal places by the ninth convergent. The corresponding series

converges much more slowly, with more than a million terms needed to yield seven decimal places of accuracy. [13]

Variations of this argument can be used to produce continued fraction expansions for the natural logarithm, the arcsin function, and the generalized binomial series.

Notes

  1. Jones & Thron (1980) p. 5
  2. C. F. Gauss (1813), Werke, vol. 3 pp. 134–38.
  3. B. Riemann (1863), "Sullo svolgimento del quoziente di due serie ipergeometriche in frazione continua infinita" in Werke. pp. 400–406. (Posthumous fragment).
  4. L. W. Thomé (1867), "Über die Kettenbruchentwicklung des Gauß'schen Quotienten ...," Jour. für Math. vol. 67 pp. 299–309.
  5. E. B. Van Vleck (1901), "On the convergence of the continued fraction of Gauss and other continued fractions." Annals of Mathematics, vol. 3 pp. 1–18.
  6. Jones & Thron (1980) p. 206
  7. Wall, 1973 (p. 339)
  8. Wall (1973) p. 349.
  9. Jones & Thron (1980) p. 208.
  10. See the example in the article Padé table for the expansions of ez as continued fractions of Gauss.
  11. ProofWiki
  12. Wall (1973) p. 343. Notice that i and −i are branch points for the inverse tangent function.
  13. Jones & Thron (1980) p. 202.

Related Research Articles

<span class="mw-page-title-main">Exponential function</span> Mathematical function, denoted exp(x) or e^x

The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Natural logarithm</span> Logarithm to the base of the mathematical constant e

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction, the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers are called the coefficients or terms of the continued fraction.

In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

<span class="mw-page-title-main">Generalized hypergeometric function</span> Family of power series in mathematics

In mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n. The series, if convergent, defines a generalized hypergeometric function, which may then be defined over a wider domain of the argument by analytic continuation. The generalized hypergeometric series is sometimes just called the hypergeometric series, though this term also sometimes just refers to the Gaussian hypergeometric series. Generalized hypergeometric functions include the (Gaussian) hypergeometric function and the confluent hypergeometric function as special cases, which in turn have many particular special functions as special cases, such as elementary functions, Bessel functions, and the classical orthogonal polynomials.

<span class="mw-page-title-main">Incomplete gamma function</span> Types of special mathematical functions

In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals.

In complex analysis, a branch of mathematics, a generalized continued fraction is a generalization of regular continued fractions in canonical form, in which the partial numerators and partial denominators can assume arbitrary complex values.

<span class="mw-page-title-main">Confluent hypergeometric function</span> Solution of a confluent hypergeometric equation

In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term confluent refers to the merging of singular points of families of differential equations; confluere is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions:

<span class="mw-page-title-main">Hypergeometric function</span> Function defined by a hypergeometric series

In mathematics, the Gaussian or ordinary hypergeometric function2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation.

<span class="mw-page-title-main">Lemniscate constant</span> Ratio of the perimeter of Bernoullis lemniscate to its diameter

In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

<span class="mw-page-title-main">Bessel–Clifford function</span>

In mathematical analysis, the Bessel–Clifford function, named after Friedrich Bessel and William Kingdon Clifford, is an entire function of two complex variables that can be used to provide an alternative development of the theory of Bessel functions. If

In the analytic theory of continued fractions, the convergence problem is the determination of conditions on the partial numeratorsai and partial denominatorsbi that are sufficient to guarantee the convergence of the continued fraction

In the analytic theory of continued fractions, Euler's continued fraction formula is an identity connecting a certain very general infinite series with an infinite continued fraction. First published in 1748, it was at first regarded as a simple identity connecting a finite sum with a finite continued fraction in such a way that the extension to the infinite case was immediately apparent. Today it is more fully appreciated as a useful tool in analytic attacks on the general convergence problem for infinite continued fractions with complex elements.

In mathematics, an infinite periodic continued fraction is a continued fraction that can be placed in the form

<span class="mw-page-title-main">Padé table</span>

In complex analysis, a Padé table is an array, possibly of infinite extent, of the rational Padé approximants

The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as:

In the 1760s, Johann Heinrich Lambert was the first to prove that the number π is irrational, meaning it cannot be expressed as a fraction , where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus. Three simplifications of Hermite's proof are due to Mary Cartwright, Ivan Niven, and Nicolas Bourbaki. Another proof, which is a simplification of Lambert's proof, is due to Miklós Laczkovich. Many of these are proofs by contradiction.

<span class="mw-page-title-main">Rogers–Ramanujan continued fraction</span> Continued fraction closely related to the Rogers–Ramanujan identities

The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

References