In complex analysis, Gauss's continued fraction is a particular class of continued fractions derived from hypergeometric functions. It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several important elementary functions, as well as some of the more complicated transcendental functions.
Lambert published several examples of continued fractions in this form in 1768, and both Euler and Lagrange investigated similar constructions, [1] but it was Carl Friedrich Gauss who utilized the algebra described in the next section to deduce the general form of this continued fraction, in 1813. [2]
Although Gauss gave the form of this continued fraction, he did not give a proof of its convergence properties. Bernhard Riemann [3] and L.W. Thomé [4] obtained partial results, but the final word on the region in which this continued fraction converges was not given until 1901, by Edward Burr Van Vleck. [5]
Let be a sequence of analytic functions that obey the three-term recurrence relation
for all , where the are constants.
Then
Setting
So
Repeating this ad infinitum produces the continued fraction expression
In Gauss's continued fraction, the functions are hypergeometric functions of the form , , and , and the equations arise as identities between functions where the parameters differ by integer amounts. These identities can be proven in several ways, for example by expanding out the series and comparing coefficients, or by taking the derivative in several ways and eliminating it from the equations generated.
The simplest case involves
Starting with the identity
we may take
giving
or
This expansion converges to the meromorphic function defined by the ratio of the two convergent series (provided, of course, that a is neither zero nor a negative integer).
The next case involves
for which the two identities
are used alternately.
Let
etc.
This gives where , producing
or
Similarly
or
Since , setting a to 0 and replacing b + 1 with b in the first continued fraction gives a simplified special case:
The final case involves
Again, two identities are used alternately.
These are essentially the same identity with a and b interchanged.
Let
etc.
This gives where , producing [6]
or
Since , setting a to 0 and replacing c + 1 with c gives a simplified special case of the continued fraction:
In this section, the cases where one or more of the parameters is a negative integer are excluded, since in these cases either the hypergeometric series are undefined or that they are polynomials so the continued fraction terminates. Other trivial exceptions are excluded as well.
In the cases and , the series converge everywhere so the fraction on the left hand side is a meromorphic function. The continued fractions on the right hand side will converge uniformly on any closed and bounded set that contains no poles of this function. [7]
In the case , the radius of convergence of the series is 1 and the fraction on the left hand side is a meromorphic function within this circle. The continued fractions on the right hand side will converge to the function everywhere inside this circle.
Outside the circle, the continued fraction represents the analytic continuation of the function to the complex plane with the positive real axis, from +1 to the point at infinity removed. In most cases +1 is a branch point and the line from +1 to positive infinity is a branch cut for this function. The continued fraction converges to a meromorphic function on this domain, and it converges uniformly on any closed and bounded subset of this domain that does not contain any poles. [8]
We have
so
This particular expansion is known as Lambert's continued fraction and dates back to 1768. [9]
It easily follows that
The expansion of tanh can be used to prove that en is irrational for every non-zero integer n (which is alas not enough to prove that e is transcendental). The expansion of tan was used by both Lambert and Legendre to prove that π is irrational.
The Bessel function can be written
from which it follows
These formulas are also valid for every complex z.
Since ,
With some manipulation, this can be used to prove the simple continued fraction representation of e ,
The error function erf (z), given by
can also be computed in terms of Kummer's hypergeometric function:
By applying the continued fraction of Gauss, a useful expansion valid for every complex number z can be obtained: [10]
A similar argument can be made to derive continued fraction expansions for the Fresnel integrals, for the Dawson function, and for the incomplete gamma function. A simpler version of the argument yields two useful continued fraction expansions of the exponential function. [11]
From
It is easily shown [12] that the Taylor series expansion of arctan z in a neighborhood of zero is given by
The continued fraction of Gauss can be applied to this identity, yielding the expansion
which converges to the principal branch of the inverse tangent function on the cut complex plane, with the cut extending along the imaginary axis from i to the point at infinity, and from −i to the point at infinity. [13]
This particular continued fraction converges fairly quickly when z = 1, giving the value π/4 to seven decimal places by the ninth convergent. The corresponding series
converges much more slowly, with more than a million terms needed to yield seven decimal places of accuracy. [14]
Variations of this argument can be used to produce continued fraction expansions for the natural logarithm, the arcsin function, and the generalized binomial series.
In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable is denoted or , with the two notations used interchangeably. It is called exponential because its argument can be seen as an exponent to which a constant number e ≈ 2.718, the base, is raised. There are several other definitions of the exponential function, which are all equivalent although being of very different nature.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
A simple or regular continued fraction is a continued fraction with numerators all equal one, and denominators built from a sequence of integer numbers. The sequence can be finite or infinite, resulting in a finite continued fraction like
In mathematics, the Lambert W function, also called the omega function or product logarithm, is a multivalued function, namely the branches of the converse relation of the function f(w) = wew, where w is any complex number and ew is the exponential function. The function is named after Johann Lambert, who considered a related problem in 1758. Building on Lambert's work, Leonhard Euler described the W function per se in 1783.
In mathematics, the error function, often denoted by erf, is a function defined as:
Linear elasticity is a mathematical model as to how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals.
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite.
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term confluent refers to the merging of singular points of families of differential equations; confluere is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions:
In mathematics, the Gaussian or ordinary hypergeometric function2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation.
In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. It also appears in evaluation of the gamma and beta function at certain rational values. The symbol ϖ is a cursive variant of π known as variant pi represented in Unicode by the character U+03D6ϖGREEK PI SYMBOL.
In the analytic theory of continued fractions, the convergence problem is the determination of conditions on the partial numeratorsai and partial denominatorsbi that are sufficient to guarantee the convergence of the infinite continued fraction
In the analytic theory of continued fractions, Euler's continued fraction formula is an identity connecting a certain very general infinite series with an infinite continued fraction. First published in 1748, it was at first regarded as a simple identity connecting a finite sum with a finite continued fraction in such a way that the extension to the infinite case was immediately apparent. Today it is more fully appreciated as a useful tool in analytic attacks on the general convergence problem for infinite continued fractions with complex elements.
In mathematics, an infinite periodic continued fraction is a simple continued fraction that can be placed in the form
In complex analysis, a Padé table is an array, possibly of infinite extent, of the rational Padé approximants
The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as .
In the 1760s, Johann Heinrich Lambert was the first to prove that the number π is irrational, meaning it cannot be expressed as a fraction , where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus. Three simplifications of Hermite's proof are due to Mary Cartwright, Ivan Niven, and Nicolas Bourbaki. Another proof, which is a simplification of Lambert's proof, is due to Miklós Laczkovich. Many of these are proofs by contradiction.
The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.
In statistics, the Matérn covariance, also called the Matérn kernel, is a covariance function used in spatial statistics, geostatistics, machine learning, image analysis, and other applications of multivariate statistical analysis on metric spaces. It is named after the Swedish forestry statistician Bertil Matérn. It specifies the covariance between two measurements as a function of the distance between the points at which they are taken. Since the covariance only depends on distances between points, it is stationary. If the distance is Euclidean distance, the Matérn covariance is also isotropic.
In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.