Geophotography

Last updated

Geophotography (also geo-photography or geological photography) is a subfield of geology that involves the use of photography or other imaging techniques in the visible or near-visible (e.g. ultraviolet, infrared) spectrum to realistically record objects, features, and processes of geological significance. Ultimately geophotography is motivated by a scientific comprehension or question and serves to accomplish a specific, useful goal in furthering the understanding of the aspect of geology that it addresses. [1] However, crossover does occur from documentary to more artistic styles. As geology is, broadly, the study of the Earth, and often entails the study of large-scale features such as mountains and mountain belts, there is significant overlap between geophotography and landscape photography especially.

Contents

History

South side of Inscription Rock, New Mexico, by Timothy O'Sullivan, c. 1871 South side of Inscription Rock, New Mexico ppmsca10060u.jpg
South side of Inscription Rock, New Mexico, by Timothy O'Sullivan, c.1871

In the latter half of the 19th century, photography began to replace engravings and illustrations as the primary conveyor of visual information in books. Around the same time, geological surveys started collecting photographs as archives.[ citation needed ] In 1867, photographer Timothy H. O'Sullivan, who was then known for his depictions of the destructive nature of the American Civil War, joined Clarence King's geological survey of the 40th parallel between the Rocky Mountains and the Sierra Nevada. In 1871 he embarked on a similar expedition to document the landscape and geologic features of the 100th meridian and returned with images that proved geologically valuable and emphasized the West as a hospitable place for settlers. [2] These images, and those from King's expedition, were among the first incorporated into the United States Geological Survey's Photographic Archive after its establishment in 1879. [3] W. Jerome Harrison, then-curator of the Leicester Town Museum, published the first known book of geological photographs, detailing the geology of Leicestershire and Rutland, England, in 1877. [4]

As photography became more ubiquitous, geological surveys began enlisting the help of full-time photographers as well as community volunteers. A Nature article from 1889 requests "photographs of localities, sections, or other features of geological interest in the United Kingdom" to be "placed before the Geological Section of the British Association" in an effort to unify the photographic surveys completed by miscellaneous and sundry local societies and expand any existing archives. The article also asks for "the names of local Societies, or persons who are willing to arrange for a photographic survey for geological purposes in their district." [5] This marked the primitive beginning of the type of large-scale survey photography that would go on to manifest itself in the realms of aerial photography, which was used as a survey tool by the USGS beginning just before World War I, [6] and eventually satellite imagery.

Modern usage and techniques

Field geophotography

A field photograph of cross-bedding and scour in the Logan Formation (Mississippian) of Jackson County, Ohio, by Mark Wilson Logan Formation Cross Bedding Scour.jpg
A field photograph of cross-bedding and scour in the Logan Formation (Mississippian) of Jackson County, Ohio, by Mark Wilson

Geophotography today takes numerous forms. At the most basic level, it can be accomplished using a film or digital Single-Lens Reflex (SLR) or "point-and-shoot" (compact) camera in the field or in the laboratory. In the field, special consideration is given to natural lighting of the object or feature being photographed. Scale is especially important in geophotography, and meter sticks, rock hammers, people, lens caps, coins, or other objects that are carried on-hand, are often placed in the frame to indicate the size of the feature being photographed. Images are generally cataloged automatically or manually with location information and grid reference (or latitude and longitude) data.[ citation needed ] These types of photographs are consistently used as visual aids in papers, field trip guides, reports, reviews, and posters. However, they are increasingly finding use as trackers of small-scale morphologic change, wherein photographs are repeatedly taken of particular features or places over time to show how the features or places are changing on a diurnal to annual time scale. [7]

Laboratory geophotography

A staged laboratory photograph of Halysites sp., a Silurian tabulate coral, by Mark Wilson HalysitesSilurian.jpg
A staged laboratory photograph of Halysites sp., a Silurian tabulate coral, by Mark Wilson

In the laboratory, photography is typically used as a cataloging tool or a means of illustrating objects on a small to microscopic scale, such as individual fossils, grains, or microstructures. Equipment is often similar, perhaps with the addition of a macro lens and/or a tripod or otherwise stabilized camera mounting system. Small studio-like areas with neutral backgrounds and artificial lighting are often used to emphasize minute structures and details. Material coatings, such as water, alcohol, or ammonium chloride, are also often selectively applied to bring out certain aspects or features of the object being photographed. At even smaller scales, a range of analytical techniques, including microscopy, scanning electron microscopy (SEM), and X-ray, UV, and IR photography can be used to accomplish the goals of geophotography.[ citation needed ]

Remote sensing

Perhaps the most rapidly expanding application of geophotography is remote sensing, which encompasses both aerial and satellite imaging. In addition to photography, on-board sensors carried by these systems perform a number of different types of analyses, ranging from visual analysis to digital elevation data gathering. Remote sensing imagery is applied extensively in geology for a multitude of purposes. High-resolution Light Detection and Ranging (LiDAR; also known as Airborne Laser Scanning) data is used to construct digital elevation models of terrain to understand and track change and effects of rivers, glaciers, ice caps, oceans, volcanoes, and more. [8] Data from other topography missions has yielded substantial results in the holistic and synoptic geologic understanding of the processes, such as natural hazards, at work on Earth (e.g. SRTM, [9] ASTER GDEM) and on other planets such as Mars (e.g. MOLA [10] ). Modern high-resolution sensors even allow remote viewing and analysis of fine stratigraphy [11] on other planets.

Geophotography as an educational tool

Geophotography features heavily in publicity because of its inherent ability to communicate a point or goal while avoiding technical jargon. Photography as a medium is also presentable in many more venues and much more widely accessible than text formats. Thus geophotography is an important tool in formal academic settings, public museums, and especially in issue-based forums. [12] The conservation movement, championed by national and state park systems as well as organizations such as the Sierra Club and the Appalachian Mountain Club, has used geophotography as an especially effective outreach tool. [13] Databases, such as Google's Historical Imagery project, Vermont's Landscape Change Program, or Ohio's GIS-Based Photographic Archive, are particularly capable of displaying visual evidence of trends over various time scales and are thus highlighted extensively in arenas of historical interest and public debate.

Related Research Articles

<span class="mw-page-title-main">Digital elevation model</span> 3D computer-generated imagery and measurements of terrain

A digital elevation model (DEM) or digital surface model (DSM) is a 3D computer graphics representation of elevation data to represent terrain or overlaying objects, commonly of a planet, moon, or asteroid. A "global DEM" refers to a discrete global grid. DEMs are used often in geographic information systems (GIS), and are the most common basis for digitally produced relief maps. A digital terrain model (DTM) represents specifically the ground surface while DEM and DSM may represent tree top canopy or building roofs.

<span class="mw-page-title-main">Topography</span> Study of the forms of land surfaces

Topography is the study of the forms and features of land surfaces. The topography of an area may refer to the land forms and features themselves, or a description or depiction in maps.

<span class="mw-page-title-main">Remote sensing</span> Acquisition of information at a significant distance from the subject

Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Earth and other planets. Remote sensing is used in numerous fields, including geophysics, geography, land surveying and most Earth science disciplines. It also has military, intelligence, commercial, economic, planning, and humanitarian applications, among others.

<span class="mw-page-title-main">Aerial photography</span> Taking images of the ground from the air

Aerial photography is the taking of photographs from an aircraft or other airborne platforms. When taking motion pictures, it is also known as aerial videography.

Image analysis or imagery analysis is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques. Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face.

<span class="mw-page-title-main">Landsat program</span> American network of Earth-observing satellites for international research purposes

The Landsat program is the longest-running enterprise for acquisition of satellite imagery of Earth. It is a joint NASA / USGS program. On 23 July 1972, the Earth Resources Technology Satellite was launched. This was eventually renamed to Landsat 1 in 1975. The most recent, Landsat 9, was launched on 27 September 2021.

<span class="mw-page-title-main">Photogrammetry</span> Taking measurements using photography

Photogrammetry is the science and technology of obtaining reliable information about physical objects and the environment through the process of recording, measuring and interpreting photographic images and patterns of electromagnetic radiant imagery and other phenomena.

<span class="mw-page-title-main">Orthophoto</span> Geometrically corrected aerial photograph

An orthophoto, orthophotograph, orthoimage or orthoimagery is an aerial photograph or satellite imagery geometrically corrected ("orthorectified") such that the scale is uniform: the photo or image follows a given map projection. Unlike an uncorrected aerial photograph, an orthophoto can be used to measure true distances, because it is an accurate representation of the Earth's surface, having been adjusted for topographic relief, lens distortion, and camera tilt.

Aerial archaeology is the study of archaeological remains by examining them from a higher altitude. In present day, this is usually achieved by satellite images or through the use of drones.

<span class="mw-page-title-main">Bathymetry</span> Study of underwater depth of lake or ocean floors

Bathymetry is the study of underwater depth of ocean floors, lake floors, or river floors. In other words, bathymetry is the underwater equivalent to hypsometry or topography. The first recorded evidence of water depth measurements are from Ancient Egypt over 3000 years ago.

<span class="mw-page-title-main">Rephotography</span> Photographing from the site of a previous photograph

Rephotography or repeat photography is the act of photographing the same site twice, with a time lag between the two images; a diachronic, "then and now" view of a particular area. Some are casual, usually taken from the same view point but without regard to season, lens coverage or framing. Some are very precise and involve a careful study of the original image.

The following outline is provided as an overview of and topical guide to photography:

<span class="mw-page-title-main">Terrain cartography</span> Representation of surface shape on maps

Terrain cartography or relief mapping is the depiction of the shape of the surface of the Earth on a map, using one or more of several techniques that have been developed. Terrain or relief is an essential aspect of physical geography, and as such its portrayal presents a central problem in cartographic design, and more recently geographic information systems and geovisualization.

The American Society for Photogrammetry and Remote Sensing (ASPRS) is an American learned society devoted to photogrammetry and remote sensing. It is the United States' member organization of the International Society for Photogrammetry and Remote Sensing. Founded in 1934 as American Society of Photogrammetry and renamed in 1985, the ASPRS is a scientific association serving over 7,000 professional members around the world. As a professional body with oversight of specialists in the arts of imagery exploitation and photographic cartography. Its official journal is Photogrammetric Engineering & Remote Sensing (PE&RS), known as Photogrammetric Engineering between 1937 and 1975.

<span class="mw-page-title-main">Stereoplotter</span>

A stereoplotter uses stereo photographs to determine elevations. It has been the primary method to plot contour lines on topographic maps since the 1930s. Although the specific devices have advanced technologically, they are all based on the apparent change in position of a feature in the two stereo photographs.

<span class="mw-page-title-main">Aerial photographic and satellite image interpretation</span>

Aerial photographic and satellite image interpretation, or just image interpretation when in context, is the act of examining photographic images, particularly airborne and spaceborne, to identify objects and judging their significance. This is commonly used in military aerial reconnaissance, using photographs taken from reconnaissance aircraft and reconnaissance satellites.

Planetary cartography, or cartography of extraterrestrial objects (CEO), is the cartography of solid objects outside of the Earth. Planetary maps can show any spatially mapped characteristic for extraterrestrial surfaces. Some well-known examples of these maps have been produced by the USGS, such as the latest Geologic Map of Mars, but many others are published in specialized scientific journals.

Remote sensing techniques in archaeology are an increasingly important component of the technical and methodological tool set available in archaeological research. The use of remote sensing techniques allows archaeologists to uncover unique data that is unobtainable using traditional archaeological excavation techniques.

<span class="mw-page-title-main">James W. Bagley</span>

Major James Warren Bagley was an American aerial photographer, topographic engineer and inventor.

<span class="mw-page-title-main">Remote sensing in geology</span> Data acquisition method for earth sciences

Remote sensing is used in the geological sciences as a data acquisition method complementary to field observation, because it allows mapping of geological characteristics of regions without physical contact with the areas being explored. About one-fourth of the Earth's total surface area is exposed land where information is ready to be extracted from detailed earth observation via remote sensing. Remote sensing is conducted via detection of electromagnetic radiation by sensors. The radiation can be naturally sourced, or produced by machines and reflected off of the Earth surface. The electromagnetic radiation acts as an information carrier for two main variables. First, the intensities of reflectance at different wavelengths are detected, and plotted on a spectral reflectance curve. This spectral fingerprint is governed by the physio-chemical properties of the surface of the target object and therefore helps mineral identification and hence geological mapping, for example by hyperspectral imaging. Second, the two-way travel time of radiation from and back to the sensor can calculate the distance in active remote sensing systems, for example, Interferometric synthetic-aperture radar. This helps geomorphological studies of ground motion, and thus can illuminate deformations associated with landslides, earthquakes, etc.

References

  1. Magloughlin, J.F. (2011). "Geophotography as a subfield within the geosciences". Geological Society of America Abstracts with Programs. 43 (5): 25.
  2. Foresta, M.A. (1996). American Photographs: The First Century. Washington, D.C.: National Museum of American Art with the Smithsonian Institution Press.
  3. Rabbitt, M.C. (2000). "The United States Geological Survey: 1879-1989". USGS. Retrieved May 22, 2013.
  4. Harrison, W.J. (1877). A sketch of the geology of Leicestershire & Rutland. London: William White.
  5. Jeffs, O.W. (1889). "Geological Photography". Nature. 40 (1019): 34–35. Bibcode:1889Natur..40R..34J. doi:10.1038/040034d0. S2CID   3996901.
  6. Bagley, W.J. (1917). "The use of the panoramic camera in topographic surveying: with notes on the application of photogrammetry to aerial surveys" (PDF). US Geological Survey Bulletin. 657: 102 p.
  7. E.g., Collins, A.; Appleton, S.; Judge, S.; Clemons, J.; Bansberg, Marsha; Wiles, G. (2011). "The use of geophotography as a permanent resource in higher education: a case study in the documentation of fluvial landscapes in northeast Ohio". Geological Society of America Abstracts with Programs. 43: 78.
  8. E.g., Wilson, T.; Castho, B. (2007). "Airborne laser swath mapping of the Denton Hills, Transantarctic Mountains, Antarctica: Applications for structural and glacial geomorphic mapping". In Cooper, A.K.; Raymond, C.R. (eds.). Antarctica: A Keystone in a Changing World - Online Proceedings of the 10th ISAES. Open-File Report 2007-1047. Vol. Short Research Paper 089. USGS. pp. 6 p. doi:10.3133/of2007-1047.srp089 (inactive 2024-09-18).{{cite book}}: CS1 maint: DOI inactive as of September 2024 (link)
  9. Kervyn, M.; Kervyn, F.; Goossens, R.; Rowland, S.K.; Ernst, G.G.J. (2007). "Mapping volcanic terrain using high-resolution and 3D satellite remote sensing". In Teeuw, R.M. (ed.). Mapping Hazardous Terrain using Remote Sensing. Special Publications. Vol. 283. London: Geological Society. pp. 5–30.
  10. Smith, D.E.; Zuber, M.T.; Solomon, S.C.; Phillips, R.J.; Head, J.W.; Garvin, J.B.; Banerdt, W.B.; Muhleman, D.O.; et al. (1999). "The Global Topography of Mars and Implications for Surface Evolution" (PDF). Science. 284 (5419): 1495–503. Bibcode:1999Sci...284.1495S. doi:10.1126/science.284.5419.1495. PMID   10348732.
  11. Limaye, A.B.S.; Aharonson, O.; Perron, J.T. (2012). "Detailed stratigraphy and bed thickness of the Mars north and south polar layered deposits" (PDF). Journal of Geophysical Research: Planets. 117 (E6): 15 p. Bibcode:2012JGRE..117.6009L. doi: 10.1029/2011JE003961 . hdl:1721.1/85622.
  12. Miller, M. (2013). Geophotography as Public Outreach (Webinar). Carleton College. Retrieved 2013-05-22.
  13. Miller, M.B.; Bishop, E.M. (2011). "Briding science and art: reaching the public through geological photography". Geological Society of America Abstracts with Programs. 43: 25.