Gliese 777 c

Last updated
Gliese 777 c
Discovery
Discovered by Marcy et al.
Discovery site United States
Discovery date24 June 2005
Doppler spectroscopy
Orbital characteristics
Apastron 0.129 AU (19,300,000 km)
Periastron 0.127 AU (19,000,000 km)
0.128 ± 0.002 AU (19,150,000 ± 300,000 km)
Eccentricity 0.01 ± 0.1
17.1 ± 0.015 d
0.047 y
2,450,000.07 ± 0.9
153.7 ± 32
Semi-amplitude 4.6 ± 1.1
Star Gliese 777 A
Physical characteristics
Temperature ~717

    Gliese 777 c, often catalogued as Gliese 777 Ac or simply HD 190360 c, is an extrasolar planet approximately 52 light-years away in the constellation of Cygnus. The planet was discovered orbiting the primary star of the Gliese 777 system in 2005 using the radial velocity method and confirmed in 2009. [1] [2] The planet was once called the "smallest extrasolar planet discovered", but this is currently no longer the case. With a minimum mass just 18 times that of the Earth, the planet is likely a "hot Neptune" planet, a small Jovian planet, or possibly a large terrestrial planet (a super-Earth).

    Contents

    See also

    Related Research Articles

    <span class="mw-page-title-main">HD 12661</span> Star in the constellation Aries

    HD 12661 is a G-type main sequence star in the northern constellation of Aries. The star is slightly larger and more massive than the Sun, with an estimated age of seven billion years. It has two known extrasolar planets.

    <span class="mw-page-title-main">Gliese 876</span> Star in the constellation Aquarius

    Gliese 876 is a red dwarf star 15.2 light-years away from Earth in the constellation of Aquarius. It is one of the closest known stars to the Sun confirmed to possess a planetary system with more than two planets, after GJ 1061, YZ Ceti, Tau Ceti, and Wolf 1061; as of 2018, four extrasolar planets have been found to orbit the star. The planetary system is also notable for the orbital properties of its planets. It is the only known system of orbital companions to exhibit a near-triple conjunction in the rare phenomenon of Laplace resonance. It is also the first extrasolar system around a normal star with measured coplanarity. While planets b and c are located in the system's habitable zone, they are giant planets believed to be analogous to Jupiter.

    <span class="mw-page-title-main">Gliese 436</span> Star in the constellation Leo

    Gliese 436 is a red dwarf located 31.9 light-years away in the zodiac constellation of Leo. It has an apparent visual magnitude of 10.67, which is much too faint to be seen with the naked eye. However, it can be viewed with even a modest telescope of 2.4 in (6 cm) aperture. In 2004, the existence of an extrasolar planet, Gliese 436 b, was verified as orbiting the star. This planet was later discovered to transit its host star.

    HD 217107 is a yellow subgiant star approximately 65 light-years away from Earth in the constellation of Pisces. Its mass is very similar to the Sun's, although it is considerably older. Two planets have been discovered orbiting the star: one is extremely close and completes an orbit every seven days, while the other is much more distant, taking fourteen years to complete an orbit.

    Gliese 777, often abbreviated as Gl 777 or GJ 777, is a binary star approximately 52 light-years away in the constellation of Cygnus. The system is also a binary star system made up of two stars and possibly a third. As of 2005, two extrasolar planets are known to orbit the primary star.

    <span class="mw-page-title-main">HD 108874</span> Star in the constellation Coma Berenices

    HD 108874 is a star with a pair of orbiting exoplanets in the northern constellation of Coma Berenices. It is located 194.5 light years from the Sun based on parallax measurements, but is drifting closer with a radial velocity of −30 km/s. The absolute magnitude of this star is 4.79, but at that distance the star has an apparent visual magnitude of 8.76, making it too faint to be visible to the naked eye. HD 108874 has a relatively large proper motion, traversing the celestial sphere at an angular rate of 0.157″ yr−1.

    <span class="mw-page-title-main">HD 28185 b</span> Gas giant orbiting HD 28185

    HD 28185 b is an extrasolar planet 128 light-years away from Earth in the constellation of Eridanus. The planet was discovered orbiting the Sun-like star HD 28185 in April 2001 as a part of the CORALIE survey for southern extrasolar planets, and its existence was independently confirmed by the Magellan Planet Search Survey in 2008. HD 28185 b orbits its sun in a circular orbit that is at the inner edge of its star's habitable zone.

    <span class="mw-page-title-main">HD 217107 c</span> Extrasolar planet in the constellation Pisces

    HD 217107 c is an extrasolar planet approximately 64 light-years away from Earth in the constellation of Pisces. The planet was the second planet to be discovered orbiting the star HD 217107. HD 217107 c's existence was hypothesized in 1998 due to the eccentricity of the inner planet's orbit and confirmed in 2005 when radial velocity studies of the star indicated another, more distant and massive companion orbiting the star. The planet has an eccentric orbit lasting on order of a decade.

    <span class="mw-page-title-main">Gliese 876 d</span> Super-Earth orbiting Gliese 876

    Gliese 876 d is an exoplanet 15.2 light-years away in the constellation of Aquarius. The planet was the third planet discovered orbiting the red dwarf Gliese 876, and is the innermost planet in the system. It was the lowest-mass known exoplanet apart from the pulsar planets orbiting PSR B1257+12 at the time of its discovery. Due to its low mass, it can be categorized as a super-Earth.

    <span class="mw-page-title-main">Gliese 876 c</span> Gas giant orbiting Gliese 876

    Gliese 876 c is an exoplanet orbiting the red dwarf Gliese 876, taking about 30 days to complete an orbit. The planet was discovered in April 2001 and is the second planet in order of increasing distance from its star.

    <span class="mw-page-title-main">Gliese 876 b</span> Extrasolar planet orbiting Gliese 876

    Gliese 876 b is an exoplanet orbiting the red dwarf Gliese 876. It completes one orbit in approximately 61 days. Discovered in June 1998, Gliese 876 b was the first planet to be discovered orbiting a red dwarf.

    <span class="mw-page-title-main">Super-Earth</span> Type of exoplanet

    A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

    HD 11964 is a binary star system located 110 light-years away from the Sun in the equatorial constellation of Cetus. It is visible in binoculars or a telescope but is too faint to be seen with the naked eye, having an apparent visual magnitude of 7.51. The system is drifting closer to the Sun with a radial velocity of −9 km/s. Two extrasolar planets have been confirmed to orbit the primary.

    HD 11964 c is an extrasolar planet approximately 110 light-years away in the constellation of Cetus. The planet was discovered in a close-orbit around the yellow subgiant star HD 11964. The planet has a minimum mass 35 times the mass of Earth and is located in a mildly eccentric orbit which takes almost 38 days to complete. HD 11964 c was a possible planet discovered on the same day as HD 11964 b in 2005. HD 11964 c was first proposed in a paper published in 2007, and finally confirmed with new data presented in a review of multi-planet systems which appeared on the arXiv preprint website in 2008.

    HD 11964 b is an extrasolar planet, a gas giant like Jupiter approximately 110 light-years away in the constellation of Cetus. The planet orbits the yellow subgiant star HD 11964 in a nearly-circular orbit, taking over 5 years to complete a revolution around the star at a distance of 3.34 astronomical units.

    Gliese 86 is a K-type main-sequence star approximately 35 light-years away in the constellation of Eridanus. It has been confirmed that a white dwarf orbits the primary star. In 1998 the European Southern Observatory announced that an extrasolar planet was orbiting the star.

    HD 183263 b is an extrasolar planet orbiting the star HD 183263. This planet has a minimum mass of 3.6 times more than Jupiter and takes 625 days to orbit the star. The planet was discovered on January 25, 2005 using multiple Doppler measurements of five nearby FGK main-sequence stars and subgiants obtained during the past 4–6 years at the Keck Observatory in Mauna Kea, Hawaii. These stars, namely, HD 183263, HD 117207, HD 188015, HD 45350, and HD 99492, all exhibit coherent variations in their Doppler shifts consistent with a planet in Keplerian motion, and the results were published in a paper by Geoffrey Marcy et al. Photometric observations were acquired for four of the five host stars with an automatic telescope at Fairborn Observatory. The lack of brightness variations in phase with the radial velocities supports planetary-reflex motion as the cause of the velocity variations. An additional planet in the system was discovered later.

    HD 108874 b is a gas giant announced in 2003. The orbit lies in the star's habitable zone. It is expected that any moons orbiting this planet are enriched in carbon, and are thus quite different from the silicate-rich bodies in the Solar System. The planet is possibly in a 4 : 1 orbital resonance with HD 108874 c.

    HD 108874 c is a gas giant discovered in 2005 which orbits beyond the star's habitable zone, and receives insolation 15.9% that of Earth. It has minimum mass similar to Jupiter, although since the inclination of the orbit is not known the true mass of this planet could be much greater. The planet is possibly in a 4 : 1 orbital resonance with HD 108874 b.

    <span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

    An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 June 2024, there are 5,742 confirmed exoplanets in 4,237 planetary systems, with 904 systems having more than one planet. This is a list of the most notable discoveries.

    References

    1. Vogt, Steven S.; et al. (2005). "Five New Multicomponent Planetary Systems" (PDF). The Astrophysical Journal. 632 (1): 638–658. Bibcode:2005ApJ...632..638V. doi:10.1086/432901. S2CID   16509245. Archived (PDF) from the original on 2018-07-22. Retrieved 2020-09-03.
    2. Wright, J. T.; et al. (2009). "Ten New and Updated Multi-planet Systems, and a Survey of Exoplanetary Systems". The Astrophysical Journal. 693 (2): 1084–1099. arXiv: 0812.1582 . Bibcode:2009ApJ...693.1084W. doi:10.1088/0004-637X/693/2/1084. S2CID   18169921.