Glycinamide

Last updated
Glycinamide
Glycinamide.svg
Names
Preferred IUPAC name
2-Aminoacetamide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.009.031 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • C(C(=O)N)N
Properties
C2H6N2O
Molar mass 74.083 g·mol−1
Appearancewhite solid
Melting point 65–67 °C (149–153 °F; 338–340 K)
Boiling point decomposes
good
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Glycinamide is an organic compound with the molecular formula H2NCH2C(O)NH2. It is the amide derivative of the amino acid glycine. It is a water-soluble, white solid. Amino acid amides, such as glycinamide are prepared by treating the amino acid ester with ammonia. [1]

It is a ligand for transition metals, related to amino acid complexes. As a neutral ligand, it binds through the amine. In some complexes, it binds through the amine and the carbonyl oxygen, forming a five-membered chelate ring. [2]

The hydrochloride salt of glycinamide, glycinamide hydrochloride, is one of Good's buffers with a pH in the physiological range. Glycinamide hydrochloride has a pKa near the physiological pH (8.20 at 20°C), making it useful in cell culture work. Its ΔpKa/°C is -0.029 and it has a solubility in water at 0 °C of 6.4 M.

Glycinamide is a reagent used in the synthesis of glycineamide ribonucleotide (an intermediate in de novo purine biosynthesis). [3]

Related Research Articles

<span class="mw-page-title-main">Amino acid</span> Organic compounds containing amine and carboxylic groups

Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 appear in the genetic code of life.

<span class="mw-page-title-main">Amine</span> Chemical compounds and groups containing nitrogen with a lone pair (:N)

In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Formally, amines are derivatives of ammonia (NH3, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Important amines include amino acids, biogenic amines, trimethylamine, and aniline. Inorganic derivatives of ammonia are also called amines, such as monochloramine.

<span class="mw-page-title-main">Amide</span> Organic compounds of the form RC(=O)NR′R″

In organic chemistry, an amide, also known as an organic amide or a carboxamide, is a compound with the general formula R−C(=O)−NR′R″, where R, R', and R″ represent any group, typically organyl groups or hydrogen atoms. The amide group is called a peptide bond when it is part of the main chain of a protein, and an isopeptide bond when it occurs in a side chain, as in asparagine and glutamine. It can be viewed as a derivative of a carboxylic acid with the hydroxyl group replaced by an amine group ; or, equivalently, an acyl (alkanoyl) group joined to an amine group.

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

In chemistry, biochemistry, and pharmacology, a dissociation constant (KD) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex falls apart into its component molecules, or when a salt splits up into its component ions. The dissociation constant is the inverse of the association constant. In the special case of salts, the dissociation constant can also be called an ionization constant. For a general reaction:

<span class="mw-page-title-main">Glycine</span> Amino acid

Glycine is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid. Glycine is one of the proteinogenic amino acids. It is encoded by all the codons starting with GG. Glycine is integral to the formation of alpha-helices in secondary protein structure due to the "flexibility" caused by such a small R group. Glycine is also an inhibitory neurotransmitter – interference with its release within the spinal cord can cause spastic paralysis due to uninhibited muscle contraction.

In chemistry, an acid dissociation constant is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction

<span class="mw-page-title-main">Ethylenediaminetetraacetic acid</span> Chemical compound

Ethylenediaminetetraacetic acid (EDTA), also called EDTA acid, is an aminopolycarboxylic acid with the formula [CH2N(CH2CO2H)2]2. This white, slightly water-soluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes even at neutral pH. It is thus used to dissolve Fe- and Ca-containing scale as well as to deliver iron ions under conditions where its oxides are insoluble. EDTA is available as several salts, notably disodium EDTA, sodium calcium edetate, and tetrasodium EDTA, but these all function similarly.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

A hormone receptor is a receptor molecule that binds to a specific hormone. Hormone receptors are a wide family of proteins made up of receptors for thyroid and steroid hormones, retinoids and Vitamin D, and a variety of other receptors for various ligands, such as fatty acids and prostaglandins. Hormone receptors are of mainly two classes. Receptors for peptide hormones tend to be cell surface receptors built into the plasma membrane of cells and are thus referred to as trans membrane receptors. An example of this is Actrapid. Receptors for steroid hormones are usually found within the protoplasm and are referred to as intracellular or nuclear receptors, such as testosterone. Upon hormone binding, the receptor can initiate multiple signaling pathways, which ultimately leads to changes in the behavior of the target cells.

<span class="mw-page-title-main">Hydrochloride</span> Any salt of an organic base and hydrochloric acid

In chemistry, a hydrochloride is an acid salt resulting, or regarded as resulting, from the reaction of hydrochloric acid with an organic base. An alternative name is chlorhydrate, which comes from French. An archaic alternative name is muriate, derived from hydrochloric acid's ancient name: muriatic acid.

<span class="mw-page-title-main">Crown ether</span> Ring molecules with several ether (–O–) groups

In organic chemistry, crown ethers are cyclic chemical compounds that consist of a ring containing several ether groups (R−O−R’). The most common crown ethers are cyclic oligomers of ethylene oxide, the repeating unit being ethyleneoxy, i.e., −CH2CH2O−. Important members of this series are the tetramer (n = 4), the pentamer (n = 5), and the hexamer (n = 6). The term "crown" refers to the resemblance between the structure of a crown ether bound to a cation, and a crown sitting on a person's head. The first number in a crown ether's name refers to the number of atoms in the cycle, and the second number refers to the number of those atoms that are oxygen. Crown ethers are much broader than the oligomers of ethylene oxide; an important group are derived from catechol.

Triethylamine is the chemical compound with the formula N(CH2CH3)3, commonly abbreviated Et3N. Like triethanolamine and tetraethylammonium, it is often abbreviated TEA. It is a colourless volatile liquid with a strong fishy odor reminiscent of ammonia. Like diisopropylethylamine (Hünig's base), triethylamine is commonly employed in organic synthesis, usually as a base.

Good's buffers are twenty buffering agents for biochemical and biological research selected and described by Norman Good and colleagues during 1966–1980. Most of the buffers were new zwitterionic compounds prepared and tested by Good and coworkers for the first time, though some were known compounds previously overlooked by biologists. Before Good's work, few hydrogen ion buffers between pH 6 and 8 had been accessible to biologists, and very inappropriate, toxic, reactive and inefficient buffers had often been used. Many Good's buffers became and remain crucial tools in modern biological laboratories.

<span class="mw-page-title-main">Bioconjugation</span> Chemical process

Bioconjugation is a chemical strategy to form a stable covalent link between two molecules, at least one of which is a biomolecule. Methods to conjugate biomolecules are applied in various field, including medicine, diagnostics, biocatalysis and materials. Synthetically modified biomolecules can have diverse functionalities, such as tracking cellular events, revealing enzyme function, determining protein biodistribution, imaging specific biomarkers, and delivering drugs to targeted cells.

<span class="mw-page-title-main">Free base</span> Pure molecular form of an amine, as opposed to its protonated salt form

Free base is a descriptor for the neutral form of an amine commonly used in reference to illicit drugs. The amine is often an alkaloid, such as nicotine, cocaine, morphine, and ephedrine, or derivatives thereof. Freebasing is a more efficient method of self-administering alkaloids via the smoking route.

A polyamine is an organic compound having more than two amino groups. Alkyl polyamines occur naturally, but some are synthetic. Alkylpolyamines are colorless, hygroscopic, and water soluble. Near neutral pH, they exist as the ammonium derivatives. Most aromatic polyamines are crystalline solids at room temperature.

Transition metal amino acid complexes are a large family of coordination complexes containing the conjugate bases of the amino acids, the 2-aminocarboxylates. Amino acids are prevalent in nature, and all of them function as ligands toward the transition metals. Not included in this article are complexes of the amides and ester derivatives of amino acids. Also excluded are the polyamino acids including the chelating agents EDTA and NTA.

<span class="mw-page-title-main">Transition metal imidazole complex</span>

A transition metal imidazole complex is a coordination complex that has one or more imidazole ligands. Complexes of imidazole itself are of little practical importance. In contrast, imidazole derivatives, especially histidine, are pervasive ligands in biology where they bind metal cofactors.

5-Amino-1-pentanol is an amino alcohol with a primary amino group and a primary hydroxy group at the ends of a linear C5-alkanes. As a derivative of the platform chemical furfural (that is easily accessible from pentoses), 5-amino-1-pentanol may become increasingly important in the future as a building block for biodegradable polyesteramides and as a starting material for valerolactam — the monomer for polyamides.

References

  1. Yang, Peter S.; Rising, Mary M. (1931). "A Simplified Method of Preparation of Alpha Amino Acid Amides". Journal of the American Chemical Society. 53 (8): 3183–3184. doi:10.1021/ja01359a505.
  2. Appleton, Trevor G. (1997). "Donor Atom Preferences in Complexes of Platinum and Palladium with Amino Acids and Related Molecules". Coordination Chemistry Reviews. 166: 313–359. doi:10.1016/S0010-8545(97)00047-7.
  3. "Glycinamide hydrochloride". Gold Biotechnology. Archived from the original on 2017-12-15. Retrieved 2017-07-23.