Goldschmidt alternator

Last updated
100 kW Goldschmidt alternator at Eilvese, Germany. The 250 HP DC electric motor (right), turned the 3 ft. diameter, 5 ton rotor (center), at 4000 RPM. The rotor had 360 poles, and the fundamental frequency of the alternator was 24 kHz. Complicated "reflector" circuits (capacitor banks against walls) forced the machine to produce alternating current at four times this frequency, 96 kHz. The transmitter was used for transatlantic radiotelegraphy traffic, exchanging Morse code messages with a similar Goldschmidt station at Tuckerton, New Jersey, USA. During World War I it was Germany's main communication channel to the outside world, and was used for diplomatic negotiations between Woodrow Wilson and Kaiser Wilhelm II leading to the Armistice. Eilvese Goldschmidt alternator.jpg
100 kW Goldschmidt alternator at Eilvese, Germany. The 250 HP DC electric motor (right), turned the 3 ft. diameter, 5 ton rotor (center), at 4000 RPM. The rotor had 360 poles, and the fundamental frequency of the alternator was 24 kHz. Complicated "reflector" circuits (capacitor banks against walls) forced the machine to produce alternating current at four times this frequency, 96 kHz. The transmitter was used for transatlantic radiotelegraphy traffic, exchanging Morse code messages with a similar Goldschmidt station at Tuckerton, New Jersey, USA. During World War I it was Germany's main communication channel to the outside world, and was used for diplomatic negotiations between Woodrow Wilson and Kaiser Wilhelm II leading to the Armistice.

The Goldschmidt alternator or reflector alternator, invented in 1908 by German engineer Rudolph Goldschmidt, [1] was a rotating machine which generated radio frequency alternating current and was used as a radio transmitter. [2] Radio alternators like the Goldschmidt were some of the first continuous wave radio transmitters. Like the similar Alexanderson alternator, it was used briefly around World War I in a few high power longwave radio stations to transmit transoceanic radiotelegraphy traffic, until the 1920s when it was made obsolete by vacuum tube transmitters.

Contents

Description

Although the device was a radio transmitter, it resembled an electric generator used to produce electric power in a power plant. Like other generators it consisted of a rotor, several feet in diameter, wound with coils of wire, which rotated inside a stationary frame called a stator which had its own coils. [3] The interaction between the magnetic fields of the rotor and stator produced radio frequency currents in the stator windings, which were applied to the antenna.

A radio frequency alternator differed from an ordinary electric generator in that to produce alternating current of high enough frequency to create radio waves (radio frequency current) it rotated much faster, and had many more magnetic "poles" on the rotor and stator, [3] usually 300 to 600. The Goldschmidt alternator was turned by a powerful DC electric motor attached to the shaft, through a geartrain which increased the motor's speed to several thousand RPM. The advantage of the Goldschmidt design was that by using external "reflector" capacitor banks that caused the output frequency to be a multiple (harmonic) of the alternator's rotation speed, it allowed the rotation speed to be kept lower, simplifying the mechanical design. [3] Goldschmidt transmitters operated at longwave (LF and VLF) frequencies of about 20 to 100 kHz.

Goldschmidt machines were used from 1910 to about 1930 as the transmitters in a few central "superpower" longwave radio stations, which were employed not for broadcasting but for wireless telegraphy , to transmit telegraph messages in Morse code to similar stations in other nations all over the world. Only alternator transmitters like the Goldschmidt and Alexanderson could produce the high powers (50 to 200 kW) necessary to communicate reliably at transoceanic distances. The Goldschmidt was a less widely used design, mostly used in European stations. The stations themselves resembled a utility powerhouse, with large electric motors turning the humming alternators, which were connected through huge loading coils to enormous wire antenna systems stretching for miles, suspended on steel towers.

History

12.5 kW Goldschmidt alternator installed in 1910 at a wireless station in Eberswald, Germany. It had an output power of 12.5 kW at a frequency of 30 kHz, or 8 to 10 kW at 60 kHz. It consists of a DC electric motor (left) driving the alternator (right) through a gearbox (center) which steps up the rotation speed. Goldschmidt alternator.jpg
12.5 kW Goldschmidt alternator installed in 1910 at a wireless station in Eberswald, Germany. It had an output power of 12.5 kW at a frequency of 30 kHz, or 8 to 10 kW at 60 kHz. It consists of a DC electric motor (left) driving the alternator (right) through a gearbox (center) which steps up the rotation speed.

Radio alternators

Around 1900 it was realized that the existing technology for generating radio waves, the spark-gap transmitter, was inadequate because it generated damped waves. Efforts were made to design a transmitter that would generate sinusoidal continuous waves , because they could be received at a longer range, and also could be modulated to transmit audio (sound) in addition to Morse code. In 1891 Frederick Trouton pointed out that if an AC generator (alternator), which produces alternating current, could be built to run fast enough, with enough magnetic poles on its armature, it would generate alternating current in the radio frequency range. If is the number of pole pairs and is the rotational speed in revolutions per second, the frequency in hertz of the current produced by an alternator is

A number of researchers beginning with Elihu Thomson and Nikola Tesla had tried building radio alternators, but they had been unable to produce frequencies above 15 kHz due to the engineering problems of building a machine with many poles that would rotate fast enough. [4] In 1906 Reginald Fessenden and Ernst Alexanderson at General Electric began to solve the problems and build alternators which could produce frequencies in the radio range, above 20 kHz. However the Alexanderson alternator ran at extremely high speeds; to reach 100 kHz with a 300 pole rotor required a rotor speed of 20,000 RPM, which was at the limit of the engineering ability of the time. [4] It was 1916 before Alexanderson machines achieved the high power needed for transatlantic communication, and they were extremely complex and expensive.

Goldschmidt's machine

Rotor of Eilvese machine Goldschmidt alternator rotor 1924.jpg
Rotor of Eilvese machine

In 1908 Westinghouse engineer Rudolph Goldschmidt devised an intricate method to enable an alternator to generate high frequency without requiring excessive speeds. [1] His technique was to exploit resonance and the nonlinear saturation characteristic of the iron rotor to use the alternator as a frequency multiplier as well as a generator. [1] [3] [5] By attaching tuned circuits called "reflector" circuits to the stator and rotor windings, Goldschmidt found that an alternator could be made to produce output power at a multiple (harmonic) of its fundamental rotational frequency . [3] The output frequency of the Goldschmidt alternator was

where was a small integer, the harmonic number. was limited to 4 in most practical machines, as losses due to leakage flux increased rapidly with increasing . Thus a 100 kHz Goldschmidt machine with = 300 poles would require a rotor speed of only = 5000 RPM, one-fourth that of an equivalent Alexanderson machine. 80% efficiency could be achieved, but in order to keep the leakage flux low enough to achieve this the machine required a very narrow clearance of 0.8 mm between the stator and rotor, which could weigh 5 tons and be moving at a peripheral speed of 200 meters per second. [3] [4] Another challenge was that to reduce hysteresis losses in the iron rotor at radio frequencies, it had to be made of very thin foil laminations, .05 mm (.002 in) thick, separated by paper sheets, [3] so the rotor was more than 1/3 paper. No rotor of this construction had ever been used in a large machine. The limit of output frequency for Goldschmidt alternators, as well as other alternator technologies, was about 200 kHz. The mechanical problems ultimately limited the use of Goldschmidt machines.

Use

The machine was developed and manufactured by the German company Hochfrequenz-Maschinen Aktiengesellschaft für Drahtlose Telegraphie ("Homag") and was mostly used in Europe. The Goldschmidt machine, like the Alexanderson and other alternator transmitters, was used mainly for high power longwave stations that transmitted radiotelegraphy messages, both commercial stations that handled private traffic, and naval stations that kept governments in touch with their colonies and naval fleets. The first Goldschmidt machine in the UK, a 12 kW, 60 kHz transmitter was installed at Stough in 1912. [1] A 100 kW, 400 pole unit (top of page) was put into operation at Eilvese, Neustadt-am-Ruebenberger, Germany, and the first machine in the USA was a similar 120 kW, 400 pole, 40.5 kHz unit at Tuckerton, New Jersey. [3] The Eilvese machine was Germany's main communication channel with the world during World War I, and was used by Kaiser Wilhelm II and US President Woodrow Wilson to negotiate the Armistice that ended the war.

The heyday of the big alternator radio transmitters was around 1918. World War I had brought home to nations the strategic importance of radio communication, as without it they could easily be isolated by enemies cutting their submarine telegraph cables. This precipitated a postwar building boom of large transcontinental alternator radio stations. However these expensive behemoths were obsolete even as they were installed. The invention of the triode vacuum tube in 1906 by Lee De Forest, and the feedback oscillator circuit in 1912 by Edwin Armstrong and Alexander Meissner, made possible smaller and cheaper vacuum tube transmitters which by the end of World War 1 could produce as much radio power as the alternators. By 1921 the Marconi Co. had installed 100 kW vacuum tube transmitters for transatlantic message traffic at its stations at Carnarvon, Wales and Glace Bay, Newfoundland. Due to their huge capital costs, legacy alternator transmitters remained in use through the 1930s and were used in World War 2 to communicate with submarines. It is not known when the last Goldschmidt machine was retired.

Other radio alternators

The Goldschmidt alternator was one of several types of rotating "radio frequency alternator" machines used as radio transmitters during the first two decades of the 20th century. [6] [3] [7] [4] Alternator transmitters produced a "cleaner" signal with less harmonics than their main competitor, the Poulsen arc transmitter so they were used in the highest power radiotelegraphy stations. [8] The machines differed in how they solved the fundamental problem of producing sufficiently high frequencies without exceeding the mechanical capabilities of rotating machines: [9]

Related Research Articles

<span class="mw-page-title-main">Electric generator</span> Device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motion-based power or fuel-based power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all the power for electrical grids.

<span class="mw-page-title-main">Alternator</span> Device converting mechanical into electrical energy

An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines.

<span class="mw-page-title-main">Synchronous motor</span> Type of AC motor

A synchronous electric motor is an AC electric motor in which, at steady state, the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integer number of AC cycles. Synchronous motors use electromagnets as the stator of the motor which create a magnetic field that rotates in time with the oscillations of the current. The rotor with permanent magnets or electromagnets turns in step with the stator field at the same rate and as a result, provides the second synchronized rotating magnet field. A synchronous motor is termed doubly fed if it is supplied with independently excited multiphase AC electromagnets on both the rotor and stator.

<span class="mw-page-title-main">Tonewheel</span> Electromechanical apparatus for generating electric musical notes

A tonewheel or tone wheel is a simple electromechanical apparatus used for generating electric musical notes in electromechanical organ instruments such as the Hammond organ and in telephony to generate audible signals such as ringing tone. It was developed by Thaddeus Cahill for the telharmonium c. 1896 and patented in 1897. It was reinvented around 1910 by Rudolph Goldschmidt for use in pre–vacuum-tube radio receivers as a beat frequency oscillator (BFO) to make continuous wave radiotelegraphy signals audible.

<span class="mw-page-title-main">Magnetic amplifier</span> A type of parametric amplifier

The magnetic amplifier is an electromagnetic device for amplifying electrical signals. The magnetic amplifier was invented early in the 20th century, and was used as an alternative to vacuum tube amplifiers where robustness and high current capacity were required. World War II Germany perfected this type of amplifier, and it was used in the V-2 rocket. The magnetic amplifier was most prominent in power control and low-frequency signal applications from 1947 to about 1957, when the transistor began to supplant it. The magnetic amplifier has now been largely superseded by the transistor-based amplifier, except in a few safety critical, high-reliability or extremely demanding applications. Combinations of transistor and mag-amp techniques are still used.

<span class="mw-page-title-main">Ernst Alexanderson</span> Swedish-American electrical engineer

Ernst Frederick Werner Alexanderson was a Swedish-American electrical engineer, who was a pioneer in radio and television development. He invented the Alexanderson alternator, an early radio transmitter used between 1906 and the 1930s for longwave long distance radio transmission. Alexanderson also created the amplidyne, a direct current amplifier used during the Second World War for controlling anti-aircraft guns.

<span class="mw-page-title-main">Motor–generator</span> Device for converting electrical power to another form

A motor–generator is a device for converting electrical power to another form. Motor–generator sets are used to convert frequency, voltage, or phase of power. They may also be used to isolate electrical loads from the electrical power supply line. Large motor–generators were widely used to convert industrial amounts of power while smaller motor–generators were used to convert battery power to higher DC voltages.

<span class="mw-page-title-main">Grimeton Radio Station</span> Historic Swedish wireless telegraphy station

Grimeton Radio Station in southern Sweden, close to Varberg in Halland, is an early longwave transatlantic wireless telegraphy station built in 1922–1924, that has been preserved as a historical site. From the 1920s through the 1940s it was used to transmit telegram traffic by Morse code to North America and other countries, and during World War II was Sweden's only telecommunication link with the rest of the world. It is the only remaining example of an early pre-electronic radio transmitter technology called an Alexanderson alternator. It was added to the UNESCO World Heritage List in 2004, with the statement: "Grimeton Radio Station, Varberg is an outstanding monument representing the process of development of communication technology in the period following the First World War." The radio station is also an anchor site for the European Route of Industrial Heritage. The transmitter is still in operational condition, and each year on a day called Alexanderson Day is started up and transmits brief Morse code test transmissions, which can be received all over Europe.

<span class="mw-page-title-main">Alexanderson alternator</span>

An Alexanderson alternator is a rotating machine invented by Ernst Alexanderson in 1904 for the generation of high-frequency alternating current for use as a radio transmitter. It was one of the first devices capable of generating the continuous radio waves needed for transmission of amplitude modulated signals by radio. It was used from about 1910 in a few "superpower" longwave radiotelegraphy stations to transmit transoceanic message traffic by Morse code to similar stations all over the world.

<span class="mw-page-title-main">AC motor</span> Electric motor driven by an AC electrical input

An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.

An induction heater is a key piece of equipment used in all forms of induction heating. Typically an induction heater operates at either medium frequency (MF) or radio frequency (RF) ranges.

An induction generator or asynchronous generator is a type of alternating current (AC) electrical generator that uses the principles of induction motors to produce electric power. Induction generators operate by mechanically turning their rotors faster than synchronous speed. A regular AC induction motor usually can be used as a generator, without any internal modifications. Because they can recover energy with relatively simple controls, induction generators are useful in applications such as mini hydro power plants, wind turbines, or in reducing high-pressure gas streams to lower pressure.

<span class="mw-page-title-main">Rotor (electric)</span> Non-stationary part of a rotary electric motor

The rotor is a moving component of an electromagnetic system in the electric motor, electric generator, or alternator. Its rotation is due to the interaction between the windings and magnetic fields which produces a torque around the rotor's axis.

<span class="mw-page-title-main">Dynamo</span> Electrical generator that produces direct current with the use of a commutator

A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter.

<span class="mw-page-title-main">Nauen Transmitter Station</span> Oldest continuously operating radio transmitting installation in the world

Nauen Transmitter Station in Nauen, Havelland district, Brandenburg, Germany, is the oldest continuously operating radio transmitting installation in the world. Germany's first high power radio transmitter, it was founded on 1 April 1906 by Telefunken corporation and operated as a longwave radiotelegraphy station through World War II, and during World War I became Germany's main link with the outside world when its submarine communications cables were cut. Upgraded with shortwave transmitters in the 1920s it was Germany's most advanced long range radio station, continually upgraded with the latest equipment and serving as an experimental station for Telefunken to test new technology. At the end of World War II, invading Russian troops dismantled and removed the transmitting equipment. During the Cold War it served as the GDR's international shortwave station Radio Berlin International (RBI), and was the East Bloc's second most powerful radio station, disseminating Communist propaganda to other countries. Since German Reunification in 1991 it has been operated by Deutsche Telekom, Germany's state telecommunication service. The original 1920 transmitter building designed by architect Herman Muthesius is still used; it is one of the many remaining buildings designed by that architect that is a protected cultural heritage site.

A permanent magnet synchronous generator is a generator where the excitation field is provided by a permanent magnet instead of a coil. The term synchronous refers here to the fact that the rotor and magnetic field rotate with the same speed, because the magnetic field is generated through a shaft mounted permanent magnet mechanism and current is induced into the stationary armature.

<span class="mw-page-title-main">Magneto</span> Electricity-producing machine

A magneto is an electrical generator that uses permanent magnets to produce periodic pulses of alternating current. Unlike a dynamo, a magneto does not contain a commutator to produce direct current. It is categorized as a form of alternator, although it is usually considered distinct from most other alternators, which use field coils rather than permanent magnets.

<span class="mw-page-title-main">Flux switching alternator</span>

A flux switching alternator is a form of high-speed alternator, an AC electrical generator, intended for direct drive by a turbine. They are simple in design with the rotor containing no coils or magnets, making them rugged and capable of high rotation speeds. This makes them suitable for their only widespread use, in guided missiles.

<span class="mw-page-title-main">Single-phase generator</span>

Single-phase generator is an alternating current electrical generator that produces a single, continuously alternating voltage. Single-phase generators can be used to generate power in single-phase electric power systems. However, polyphase generators are generally used to deliver power in three-phase distribution system and the current is converted to single-phase near the single-phase loads instead. Therefore, single-phase generators are found in applications that are most often used when the loads being driven are relatively light, and not connected to a three-phase distribution, for instance, portable engine-generators. Larger single-phase generators are also used in special applications such as single-phase traction power for railway electrification systems.

<span class="mw-page-title-main">Sainte-Assise transmitter</span> Radio transmitter in France

The Sainte-Assise transmitter is a very low frequency (VLF) radio transmitter and military installation located on the grounds of the Château de Sainte-Assise in the communes of Seine-Port, Boissise-la-Bertrand, and Cesson in the Seine-et-Marne department of the Île-de-France region of France. The transmitter's original equipment was inaugurated on 9 January 1921, at the time being the most powerful radio transmitter on Earth. On 26 November 1921 the first French radio program was transmitted from Sainte-Assise. In 1965 the transmitter was used to send VLF signals to FR-1, the first French satellite. Since 1998 the French Navy has used the transmitter to communicate with submerged submarines.

References

  1. 1 2 3 4 Burns, Russell W. (2004). Communications: An International History of the Formative Years. Institution of Electrical Engineers. p. 365. ISBN   0863413277.
  2. Graf, Rudolf F. (1999). Modern Dictionary of Electronics. Newnes. p. 323. ISBN   0750698667.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 Turner, L. B. (1931). Wireless. UK: Cambridge Univ. Press. pp. 132–141. ISBN   9781107636187.
  4. 1 2 3 4 5 6 7 8 Anderson, William Ballantyne (1919). Physics for Technical Students. McGraw-Hill Book Co. pp.  770–771. Alexanderson Goldschmidt Joly Arco.
  5. Mayer, Emil E. (March 1914). "The Goldschmidt system of radio telegraphy". Proc. IRE. 2 (1). New York: Institute of Radio Engineers: 69–92. doi:10.1109/JRPROC.1914.216615. S2CID   51632628 . Retrieved October 4, 2013.
  6. "Wireless Telegraphy". Nelson's Encyclopedia. Vol. 12. Thomas Nelson and Sons. 1907. pp. 611F. Retrieved 19 June 2020.
  7. Kimberlin, Donald E. (13 June 2000). "RF Generators - literally". Jurassic Radio Section, The Broadcast Archive. Barry Mishkind. Retrieved 17 November 2022.
  8. Caron, Francois; Erker, Paul; Fischer, Ed., Wolfram (2011). Innovations in the European Economy between the Wars. Walter de Gruyter. p. 45. ISBN   9783110881417.
  9. Hogan, John L. Jr. (September 1917). "Wireless work in wartime, Part 2". Popular Science Monthly. 19 (3): 451–453. Retrieved 17 November 2022.
  10. Vallauri, G. (19 January 1912). "A static frequency duplicator". The Electrician. 68 (1757). London: George Tucker: 582–583. Retrieved 12 November 2022.
  11. Joly, J. M. A. (May 1911). "Transformateurs statique de fréquence (Static frequency transformers)". La lumière électrique. 14 (2nd series) (20): 195–204. Retrieved 17 November 2022.
  12. Geyger, William A. (1954). Magnetic-amplifier Circuits: Basic Principles, Characteristics, and Applications. McGraw-Hill. pp. 219–222.
  13. Dennis, F. L. (1924). "Estación radiotelegráfica ultrapoderosa de Monte Grande, LPZ" (PDF). Revista telegráfica (in Spanish). No. 137. p. 22. Retrieved 21 January 2024.