Grasshopper beam engines are beam engines that are pivoted at one end, rather than in the centre.
Usually the connecting rod to the crankshaft is placed between the piston and the beam's pivot. [1] That is, they use a second-class lever, rather than the usual first-class lever.
The first recorded example of a grasshopper beam was William Murdoch's model steam carriage of 1784. [2] The beam offered negligible mechanical advantage and appears to have been used primarily instead of a crosshead, for what was effectively a return connecting rod engine. The American engineer Oliver Evans drew a high-pressure marine grasshopper engine in 1801, [note 1] and in 1805 built the Oruktor Amphibolos , an amphibious dredger. [2]
Almost all grasshopper engines placed the crankshaft between the piston and the beam's pivot. This allows a long stroke for the piston, with a shorter stroke for the crank, although with greater force. This was advantageous for early low-pressure steam engines [note 2] that had limited cylinder force but could increase their power by using a longer cylinder. A few exceptions, those of the Americans Oliver Evans' boats and Phineas Davis' Grasshopper locomotives, reversed this and placed the cylinder in between the pivot and crank: a third-class lever.
Many grasshopper engines were built as stationary engines. A few notable early steam locomotives used beam engines, all of which were of the grasshopper pattern. Rather more grasshopper engines were built as marine engines.
One of the most important uses for the grasshopper engine was as a marine engine for paddle steamers. After Evans' unsuccessful experiments with the Oruktor Amphibolos , the first successful grasshopper engine was that of the first commercially successful steamboat, the PS Comet of 1812. [3] In marine use, the grasshopper engine was termed the 'half-lever' engine [note 3] and used a pair of low-set levers, one each side of the cylinder. This gave a low centre of gravity for stability and a high crankshaft, suitable for driving paddlewheels. Comet's engine's designer, Henry Bell, had established a pattern for an engine that would be widely used for paddle steamers over the next half-century. [3]
Unlike the heavy masonry engine house used to support the beam and pivot of a conventional beam engine, the grasshopper beam was pivoted on a swinging link. The crankpin was carried directly by the beam and moved in a straight line vertically, the beam pivot moving slightly sideways on its link to allow this. [note 4] This simplified the need for a parallel motion linkage on the piston rod. Grasshopper engines were thus lighter than conventional beam engines and could be built completely in factories, rather than requiring considerable erection work to be carried out on-site. This encouraged the use of grasshopper engines for smaller sized engines. Some makers, notably Easton & Amos of Southwark, specialised in such engines. Many were used for pumping, but not for powering large mills.
In mechanical engineering, a crosshead is a mechanical joint used as part of the slider-crank linkages of long reciprocating engines and reciprocating compressors to eliminate sideways force on the piston. Also, the crosshead enables the connecting rod to freely move outside the cylinder. Because of the very small bore-to-stroke ratio on such engines, the connecting rod would hit the cylinder walls and block the engine from rotating if the piston was attached directly to the connecting rod like on trunk engines. Therefore, the longitudinal dimension of the crosshead must be matched to the stroke of the engine.
The valve gear of a steam engine is the mechanism that operates the inlet and exhaust valves to admit steam into the cylinder and allow exhaust steam to escape, respectively, at the correct points in the cycle. It can also serve as a reversing gear. It is sometimes referred to as the "motion".
A connecting rod, also called a 'con rod', is the part of a piston engine which connects the piston to the crankshaft. Together with the crank, the connecting rod converts the reciprocating motion of the piston into the rotation of the crankshaft. The connecting rod is required to transmit the compressive and tensile forces from the piston. In its most common form, in an internal combustion engine, it allows pivoting on the piston end and rotation on the shaft end.
A compound steam engine unit is a type of steam engine where steam is expanded in two or more stages. A typical arrangement for a compound engine is that the steam is first expanded in a high-pressure (HP) cylinder, then having given up heat and losing pressure, it exhausts directly into one or more larger-volume low-pressure (LP) cylinders. Multiple-expansion engines employ additional cylinders, of progressively lower pressure, to extract further energy from the steam.
The Walschaerts valve gear is a type of valve gear used to regulate the flow of steam to the pistons in steam locomotives, invented by Belgian railway engineer Egide Walschaerts in 1844. The gear is sometimes named without the final "s", since it was incorrectly patented under that name. It was extensively used in steam locomotives from the late 19th century until the end of the steam era.
Engine balance refers to how the forces are balanced within an internal combustion engine or steam engine. The most commonly used terms are primary balance and secondary balance. First-order balance and second-order balance are also used. Unbalanced forces within the engine can lead to vibrations.
The Stephenson valve gear or Stephenson link or shifting link is a simple design of valve gear that was widely used throughout the world for various kinds of steam engines. It is named after Robert Stephenson but was invented by his employees.
A beam engine is a type of steam engine where a pivoted overhead beam is used to apply the force from a vertical piston to a vertical connecting rod. This configuration, with the engine directly driving a pump, was first used by Thomas Newcomen around 1705 to remove water from mines in Cornwall. The efficiency of the engines was improved by engineers including James Watt, who added a separate condenser; Jonathan Hornblower and Arthur Woolf, who compounded the cylinders; and William McNaught, who devised a method of compounding an existing engine. Beam engines were first used to pump water out of mines or into canals but could be used to pump water to supplement the flow for a waterwheel powering a mill.
A crankpin or crank pin, also known as a rod bearing journal, is a mechanical device in an engine which connects the crankshaft to the connecting rod for each cylinder. It has a cylindrical surface, to allow the crankpin to rotate relative to the "big end" of the connecting rod.
A jackshaft is an intermediate shaft used to transfer power from a powered shaft such as the output shaft of an engine or motor to driven shafts such as the drive axles of a locomotive. As applied to railroad locomotives in the 19th and 20th centuries, jackshafts were typically in line with the drive axles of locomotives and connected to them by side rods. In general, each drive axle on a locomotive is free to move about one inch (2.5 cm) vertically relative to the frame, with the locomotive weight carried on springs. This means that if the engine, motor or transmission is rigidly attached to the locomotive frame, it cannot be rigidly connected to the axle. This problem can be solved by mounting the jackshaft on unsprung bearings and using side-rods or chain drives.
In a reciprocating engine, the dead centre is the position of a piston in which it is either farthest from, or nearest to, the crankshaft. The former is known as top dead centre (TDC) while the latter is known as bottom dead centre (BDC).
A diver's pump is a manually operated low pressure air compressor used to provide divers in standard diving dress with air while they are underwater.
A marine steam engine is a steam engine that is used to power a ship or boat. This article deals mainly with marine steam engines of the reciprocating type, which were in use from the inception of the steamboat in the early 19th century to their last years of large-scale manufacture during World War II. Reciprocating steam engines were progressively replaced in marine applications during the 20th century by steam turbines and marine diesel engines.
Musgrave's non-dead-centre engine was a stationary steam engine of unusual design, intended to solve the problem of stopping on dead centre. It was designed in 1887 to serve as a marine engine. It used a pair of linked cylinders to prevent the engine from stopping in a position where no turning force can be applied. At least one engine is known to survive.
An oscillating cylinder steam engine is a simple steam-engine design that requires no valve gear. Instead the cylinder rocks, or oscillates, as the crank moves the piston, pivoting in the mounting trunnion so that ports in the cylinder line up with ports in a fixed port face alternately to direct steam into or out of the cylinder.
A return connecting rod, return piston rod or double piston rod engine or back-acting engine is a particular layout for a steam engine.
High-speed steam engines were one of the final developments of the stationary steam engine. They ran at a high speed, of several hundred rpm, which was needed by tasks such as electricity generation.
Six-column beam engines are a type of beam engine, where the beam's central pivot is supported on a cast-iron frame or 'bedstead', supported on six iron columns.
The Willans engine or central valve engine was a high-speed stationary steam engine used mainly for electricity generation around the start of the 20th century.
The MÁV class 601 is a class of Hungarian four cylinder Mallet -type locomotives, which was designed to haul long and very heavy cargo on very steep railway tracks. With their 22.5 meter length and 2200 KW power, they were the largest and most powerful steam locomotives which have ever built before the First World War in Europe.