GrpE

Last updated

GrpE (Gro-P like protein E) is a bacterial nucleotide exchange factor that is important for regulation of protein folding machinery, as well as the heat shock response. [1] It is a heat-inducible protein and during stress it prevents unfolded proteins from accumulating in the cytoplasm. [2] [3] Accumulation of unfolded proteins in the cytoplasm can lead to cell death. [4]

Contents

GrpE Protein
Annotated GrpE structure at 2.8A.jpg
Crystal structure of GrpE homodimer interacting with ATPase binding site of DnaK, resolved at 2.8 angstrom.
Identifiers
SymbolGrpE
Pfam PF01025
InterPro IPR000740
PROSITE PS01071
SCOP2 1dkg / SCOPe / SUPFAM
CDD cd00446
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Discovery

GrpE is a nucleotide exchange factor that was first discovered by researchers in 1977 as a protein necessary to propagate bacteriophage λ, a virus that infects bacteria by highjacking the bacteria's replication machinery, [5] in Escherichia coli. [6] By using a genetic screen, researchers knocked out certain genes in E. coli and then tested whether the bacteria was able to replicate, GrpE was found to be crucial to propagation. Since that time, GrpE has been identified in all bacteria and in Archaea where DnaK and DnaJ are present. [7]

The crystal structure of GrpE was determined in 1997 at 2.8 Angstrom and identified GrpE as a homodimer that binds DnaK, a heat-shock protein involved in de novo protein folding. [8] GrpE's structure determination was important because it demonstrated the interaction of nucleotide exchange factors at the nucleotide-binding domain of DnaK. [9]

Structure

Functional domains

The GrpE homodimer has three distinct domains:

Binding induces a conformational change

Binding of GrpE's proximal β-sheet to Domain IIB of DnaK causes a 14° outward rotation of the nucleotide binding cleft, disrupting the binding of three side chains to the adenine and ribose rings of the nucleotide. This conformational change shifts DnaK from a closed to an open conformation and allows the release of ADP from the binding cleft. [12]

Function

Nucleotide exchange factor

Nucleotide exchange factors are proteins that catalyze the release of adenosine diphosphate (ADP) to facilitate binding of adenosine triphosphate (ATP). ATP has three phosphate groups and the removal of one of the phosphate groups releases energy which is used to fuel a reaction. This removal of a phosphate group reduces ATP to ADP. [13] GrpE is a nucleotide exchange factor that causes the release of bound ADP from DnaK, a heat shock protein important in de novo protein folding. DnaK, in its open conformation, binds ATP with low affinity and has a fast exchange rate for unfolded proteins. Once DnaJ, a co-chaperone, brings an unfolded protein to DnaK ATP is hydrolyzed to ADP to facilitate folding of the protein. At this point, the DnaK•ADP complex is in a stable conformation and requires GrpE to bind DnaK, change its conformation, and release ADP from the N-terminal ATPase domain of DnaK. Once ADP is released from the cycle is able to continue. [11] [10]

Co-chaperone DnaJ brings in unfolded protein to the substrate binding site of DnaK and hydrolyzes ATP, DnaJ and inorganic phosphate are released. GrpE then interacts with the nucleotide binding cleft of DnaK to induce a conformational change leading to ADP release and substrate release. Nucleotide exchange cycle.jpg
Co-chaperone DnaJ brings in unfolded protein to the substrate binding site of DnaK and hydrolyzes ATP, DnaJ and inorganic phosphate are released. GrpE then interacts with the nucleotide binding cleft of DnaK to induce a conformational change leading to ADP release and substrate release.

Kinetics

The interaction between GrpE and the nucleotide binding cleft of DnaK is strong with a Kd between 1 nM (assessed during active conformation using transient kinetics) and a Kd of 30 nM (based on inactive conformation through surface plasmon resonance). [3] This low dissociation constant indicates that GrpE readily binds to DnaK. [16] Binding of GrpE to DnaK•ADP greatly reduces the affinity of ADP for DnaK by 200-fold and accelerates the rate of nucleotide release by 5000-fold. This process facilitates the de novo folding of unfolded protein by DnaK. [3] [11]

Protein Folding

GrpE also has an important role in substrate release from DnaK. [3] The disordered N-terminal region of GrpE competes for binding to DnaK's substrate binding cleft. Researchers mutated GrpE to identify the function of its structural domains. Mutated GrpE, without its disordered N-terminal domain, is still able to bind to DnaK's nucleotide binding cleft and induce a conformational change however, the substrate will not be released. [9]

Thermosensor

GrpE is a nucleotide exchange factor for DnaK, a heat shock protein, its activity is downregulated with increasing temperature. [2] In biology, reversible unfolding of α-helices begins at 35 °C with a midpoint Tm of 50 °C, this unfolding affects the structural integrity of GrpE and prevents binding of GrpE to the nucleotide binding cleft of DnaK This has an important physiological role to limit the substrate cycling and subsequent ATP expenditure during heat stress. The thermal regulation of DnaK slows protein folding and prevents unfolded proteins from accumulating in the cytoplasm at high temperatures. [3] [11] [10]

Bacteriophage λ replication

GrpE was first identified for its role in phage λ replication. [6] GrpE that has been mutated so that it is nonfunctional prevents phage λ replication in vivo and greatly decreases replication in vitro. In vitro overexpression of DnaK can recover phage λ replication without GrpE. GrpE's pivotal role in phage λ replication is at the origin of replication, after assembly of DnaB and other replication factors, GrpE facilitates bidirectional DNA unwinding through interaction with DnaK. [17]

Regulation

Transcription

In the Archaea genome, the gene for GrpE is located upstream of the gene for DnaK which, is upstream of the gene for DnaJ. Out of these three proteins, only the promoter region of GrpE has a complete TATA binding box and upstream heat-responsive binding site. This suggests that, in Archaea, these three genes are transcribed at the same time. [7]

In E. coli, GrpE's transcription is regulated by binding of the heat-shock specific subunit of RNA polymerase, σ32. [18] Under physiological conditions, σ32 is kept at low levels through inactivation by interacting with DnaK and DnaJ, then subsequent degradation by proteases. However, during heat shock these proteins are unable to interact with σ32 and target it for degradation. Therefore, during heat shock, σ32 binds to the promoter region of heat shock proteins and causes rapid induction of these genes. [19]

Other biological systems

Eukaryote homologues

In Saccharomyces cerevisiae , the GrpE homologue, Mge1, is found in mitochondria. [20] Mge1 is a nucleotide exchange factor important for shuttling proteins across mitochondrial membranes and in protein folding, it interacts with a yeast homologue of DnaK. Mge1 has a similar role as a thermosensor. [20] Yeast have additional GrpE homologues including Sil1p and Fes1p. [21] In humans, mitochondrial organelles have GrpE-like 1 (GRPEL1) protein. [22]


In eukaryotic cells, there any many additional eukaryotic GrpE homologues. [21] Members of the BAG family specifically, BAG1 are the main nucleotide exchange factors for heat shock protein 70kDa (Hsp70), which is the eukaryotic equivalent of DnaK. Other nucleotide exchange factors that interact with heat-shock proteins in eukaryotes include, Sse1p, Sil1p, Hip, and HspBP1. [2] [21] These eukaryotic nucleotide exchange factors are all heat-shock inducible meaning that they serve a similar function as GrpE, to protect the cell from unfolded protein aggregation. These nucleotide exchange factors always interact with subdomain IIB of the nucleotide binding cleft of their respective heat-shock proteins. The binding of the nucleotide exchange factor to a nucleotide binding cleft and the shift to an open conformation is conserved between prokaryotes and eukaryotes. [2] [23]

Plant homologues

In plants, GrpE homologues, CGE1 and CGE2, are found in chloroplasts. CGE1 has two splice isoforms that differ in 6 amino acids in the N-terminal, with isoform CGE1b being 6 nucleotides longer than CGE1a. This N-terminal domain is important in substrate release through competitive binding to the heat-shock protein. All of these plant nucleotide exchange factors interact directly with the cpHsc70, the plant homologue of DnaK. They are heat-inducible however, at 43 °C, they are not as effective as GrpE at protecting the cell from unfolded protein accumulation. [24] [25] [26]

Role in disease

Bacterial pathogenesis

Enterococci are bacteria that are commonly found in the gastrointestinal tract of animals, including humans. [27] These bacteria can form a biofilm, which is a layer of bacteria attached to a surface. [28] [27] Enterococcal biofilm is prevalent in hospital and surgical settings, it is responsible for 25% of catheter-related infections, [27] is found in 50% of root-filled teeth with apical periodontitis, [28] and can be isolated from other wounds. [27] GrpE is found in the genome of Enterococcus faecilis and Enterococcus faecium and is critical for enterococcal biofilm attachment to polystyrene tubes, [29] a plastic polymer commonly used in hospital settings. [30]

Group A Streptococcus pyogenes is a bacterium that can lead to common infections, including strep throat and impetigo, but is also responsible for life-threatening infections. [31] [32] During infection, GrpE helps streptococcus bacteria adhere to pharyngeal epithelial cells. [32] GrpE in Streptococcus binds to endogenous proline-rich proteins in saliva, allowing adhesion of the bacteria to the host. [32]

Related Research Articles

<span class="mw-page-title-main">DNA replication</span> Biological process

In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part of biological inheritance. This is essential for cell division during growth and repair of damaged tissues, while it also ensures that each of the new cells receives its own copy of the DNA. The cell possesses the distinctive property of division, which makes replication of DNA essential.

<span class="mw-page-title-main">Chaperone (protein)</span> Proteins assisting in protein folding

In molecular biology, molecular chaperones are proteins that assist the conformational folding or unfolding of large proteins or macromolecular protein complexes. There are a number of classes of molecular chaperones, all of which function to assist large proteins in proper protein folding during or after synthesis, and after partial denaturation. Chaperones are also involved in the translocation of proteins for proteolysis.

<span class="mw-page-title-main">Hsp70</span> Family of heat shock proteins

The 70 kilodalton heat shock proteins are a family of conserved ubiquitously expressed heat shock proteins. Proteins with similar structure exist in virtually all living organisms. Intracellularly localized Hsp70s are an important part of the cell's machinery for protein folding, performing chaperoning functions, and helping to protect cells from the adverse effects of physiological stresses. Additionally, membrane-bound Hsp70s have been identified as a potential target for cancer therapies and their extracellularly localized counterparts have been identified as having both membrane-bound and membrane-free structures.

<span class="mw-page-title-main">Hsp90</span> Heat shock proteins with a molecular mass around 90kDa

Hsp90 is a chaperone protein that assists other proteins to fold properly, stabilizes proteins against heat stress, and aids in protein degradation. It also stabilizes a number of proteins required for tumor growth, which is why Hsp90 inhibitors are investigated as anti-cancer drugs.

DNA gyrase, or simply gyrase, is an enzyme within the class of topoisomerase and is a subclass of Type II topoisomerases that reduces topological strain in an ATP dependent manner while double-stranded DNA is being unwound by elongating RNA-polymerase or by helicase in front of the progressing replication fork. It is the only known enzyme to actively contribute negative supercoiling to DNA, while it also is capable of relaxing positive supercoils. It does so by looping the template to form a crossing, then cutting one of the double helices and passing the other through it before releasing the break, changing the linking number by two in each enzymatic step. This process occurs in bacteria, whose single circular DNA is cut by DNA gyrase and the two ends are then twisted around each other to form supercoils. Gyrase is also found in eukaryotic plastids: it has been found in the apicoplast of the malarial parasite Plasmodium falciparum and in chloroplasts of several plants. Bacterial DNA gyrase is the target of many antibiotics, including nalidixic acid, novobiocin, albicidin, and ciprofloxacin.

<span class="mw-page-title-main">GroEL</span> Protein-coding gene in the species Homo sapiens

GroEL is a protein which belongs to the chaperonin family of molecular chaperones, and is found in many bacteria. It is required for the proper folding of many proteins. To function properly, GroEL requires the lid-like cochaperonin protein complex GroES. In eukaryotes the organellar proteins Hsp60 and Hsp10 are structurally and functionally nearly identical to GroEL and GroES, respectively, due to their endosymbiotic origin.

<span class="mw-page-title-main">Chaperonin</span> InterPro Family

HSP60, also known as chaperonins (Cpn), is a family of heat shock proteins originally sorted by their 60kDa molecular mass. They prevent misfolding of proteins during stressful situations such as high heat, by assisting protein folding. HSP60 belong to a large class of molecules that assist protein folding, called molecular chaperones.

<span class="mw-page-title-main">HSPA8</span> Protein-coding gene in the species Homo sapiens

Heat shock 70 kDa protein 8 also known as heat shock cognate 71 kDa protein or Hsc70 or Hsp73 is a heat shock protein that in humans is encoded by the HSPA8 gene on chromosome 11. As a member of the heat shock protein 70 family and a chaperone protein, it facilitates the proper folding of newly translated and misfolded proteins, as well as stabilize or degrade mutant proteins. Its functions contribute to biological processes including signal transduction, apoptosis, autophagy, protein homeostasis, and cell growth and differentiation. It has been associated with an extensive number of cancers, neurodegenerative diseases, cell senescence, and aging.

<span class="mw-page-title-main">Type II topoisomerase</span>

Type II topoisomerases are topoisomerases that cut both strands of the DNA helix simultaneously in order to manage DNA tangles and supercoils. They use the hydrolysis of ATP, unlike Type I topoisomerase. In this process, these enzymes change the linking number of circular DNA by ±2. Topoisomerases are ubiquitous enzymes, found in all living organisms.

<span class="mw-page-title-main">Prokaryotic DNA replication</span> DNA Replication in prokaryotes

Prokaryotic DNA Replication is the process by which a prokaryote duplicates its DNA into another copy that is passed on to daughter cells. Although it is often studied in the model organism E. coli, other bacteria show many similarities. Replication is bi-directional and originates at a single origin of replication (OriC). It consists of three steps: Initiation, elongation, and termination.

Co-chaperones are proteins that assist chaperones in protein folding and other functions. Co-chaperones are the non-client binding molecules that assist in protein folding mediated by Hsp70 and Hsp90. They are particularly essential in stimulation of the ATPase activity of these chaperone proteins. There are a great number of different co-chaperones however based on their domain structure most of them fall into two groups: J-domain proteins and tetratricopeptide repeats (TPR).

fis E. coli gene

fis is an E. coli gene encoding the Fis protein. The regulation of this gene is more complex than most other genes in the E. coli genome, as Fis is an important protein which regulates expression of other genes. It is supposed that fis is regulated by H-NS, IHF and CRP. It also regulates its own expression (autoregulation). Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions.

<span class="mw-page-title-main">HSPA1A</span> Protein-coding gene in the species Homo sapiens

Heat shock 70 kDa protein 1, also termed Hsp72, is a protein that in humans is encoded by the HSPA1A gene. As a member of the heat shock protein 70 family and a chaperone protein, it facilitates the proper folding of newly translated and misfolded proteins, as well as stabilize or degrade mutant proteins. In addition, Hsp72 also facilitates DNA repair. Its functions contribute to biological processes including signal transduction, apoptosis, protein homeostasis, and cell growth and differentiation. It has been associated with an extensive number of cancers, neurodegenerative diseases, cell senescence and aging, and inflammatory diseases such as Diabetes mellitus type 2 and rheumatoid arthritis.

<span class="mw-page-title-main">HSPA1B</span> Human gene

Human gene HSPA1B is an intron-less gene which encodes for the heat shock protein HSP70-2, a member of the Hsp70 family of proteins. The gene is located in the major histocompatibility complex, on the short arm of chromosome 6, in a cluster with two paralogous genes, HSPA1A and HSPA1L. HSPA1A and HSPA1B produce nearly identical proteins because the few differences in their DNA sequences are almost exclusively synonymous substitutions or in the three prime untranslated region, heat shock 70kDa protein 1A, from HSPA1A, and heat shock 70kDa protein 1B, from HSPA1B. A third, more modified paralog to these genes exists in the same region, HSPA1L, which shares a 90% homology with the other two.

<span class="mw-page-title-main">HSP90AB1</span> Protein-coding gene in the species Homo sapiens

Heat shock protein HSP 90-beta also called HSP90beta is a protein that in humans is encoded by the HSP90AB1 gene.

<span class="mw-page-title-main">Binding immunoglobulin protein</span> Protein-coding gene in the species Homo sapiens

Binding immunoglobulin protein (BiPS) also known as 78 kDa glucose-regulated protein (GRP-78) or heat shock 70 kDa protein 5 (HSPA5) is a protein that in humans is encoded by the HSPA5 gene.

<span class="mw-page-title-main">SIL1</span> Protein-coding gene in the species Homo sapiens

Nucleotide exchange factor SIL1 is a protein that in humans is encoded by the SIL1 gene.

<span class="mw-page-title-main">Chaperone DnaJ</span> Molecular chaperone protein

In molecular biology, chaperone DnaJ, also known as Hsp40, is a molecular chaperone protein. It is expressed in a wide variety of organisms from bacteria to humans.

<span class="mw-page-title-main">Bacterial DNA binding protein</span>

In molecular biology, bacterial DNA binding proteins are a family of small, usually basic proteins of about 90 residues that bind DNA and are known as histone-like proteins. Since bacterial binding proteins have a diversity of functions, it has been difficult to develop a common function for all of them. They are commonly referred to as histone-like and have many similar traits with the eukaryotic histone proteins. Eukaryotic histones package DNA to help it to fit in the nucleus, and they are known to be the most conserved proteins in nature. Examples include the HU protein in Escherichia coli, a dimer of closely related alpha and beta chains and in other bacteria can be a dimer of identical chains. HU-type proteins have been found in a variety of bacteria and archaea, and are also encoded in the chloroplast genome of some algae. The integration host factor (IHF), a dimer of closely related chains which is suggested to function in genetic recombination as well as in translational and transcriptional control is found in Enterobacteria and viral proteins including the African swine fever virus protein A104R.

<span class="mw-page-title-main">Sue Wickner</span> American biochemist and geneticist

Sue Hengren Wickner is an American biochemist and geneticist who is a distinguished investigator and the head of the DNA Molecular Biology section of the National Institutes of Health. Her laboratory is under the National Cancer Institute and is located in the Center for Cancer Research (NCI/CCR).

References

  1. Delaney JM. A grpE mutant of Escherichia coli is more resistant to heat than the wild-type. J Gen Microbiol. 1990;136(5):797-801. doi:10.1099/00221287-136-5-797
  2. 1 2 3 4 5 6 Bracher A, Verghese J (2015-04-07). "The nucleotide exchange factors of Hsp70 molecular chaperones". Frontiers in Molecular Biosciences. 2: 10. doi: 10.3389/fmolb.2015.00010 . PMC   4753570 . PMID   26913285.
  3. 1 2 3 4 5 6 7 Harrison C (2003). "GrpE, a nucleotide exchange factor for DnaK". Cell Stress & Chaperones. 8 (3): 218–24. PMC   514874 . PMID   14984054.
  4. Richter K, Haslbeck M, Buchner J (October 2010). "The heat shock response: life on the verge of death". Molecular Cell. 40 (2): 253–66. doi: 10.1016/j.molcel.2010.10.006 . PMID   20965420.
  5. Griffiths AJ, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (2000). "Lambda phage: a complex of operons". An Introduction to Genetic Analysis. (7th ed.). W. H. Freeman and Company.
  6. 1 2 Saito H, Uchida H (June 1977). "Initiation of the DNA replication of bacteriophage lambda in Escherichia coli K12". Journal of Molecular Biology. 113 (1): 1–25. doi:10.1016/0022-2836(77)90038-9. PMID   328896.
  7. 1 2 Hickey AJ, Conway de Macario E, Macario AJ (January 2002). "Transcription in the archaea: basal factors, regulation, and stress gene expression". Critical Reviews in Biochemistry and Molecular Biology. 37 (4): 199–258. doi:10.1080/10409230290771500. PMID   12236465. S2CID   9789015.
  8. Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F, Kuriyan J (April 1997). "Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK". Science. 276 (5311): 431–5. doi:10.1126/science.276.5311.431. PMID   9103205.
  9. 1 2 3 Brodsky JL, Bracher A (2013). Nucleotide Exchange Factors for Hsp70 Molecular Chaperones. Landes Bioscience.
  10. 1 2 3 Winter J, Jakob U (January 2004). "Beyond transcription--new mechanisms for the regulation of molecular chaperones". Critical Reviews in Biochemistry and Molecular Biology. 39 (5–6): 297–317. doi:10.1080/10409230490900658. PMID   15763707. S2CID   11960744.
  11. 1 2 3 4 Bhandari V, Houry WA (2015). "Substrate Interaction Networks of the Escherichia coli Chaperones: Trigger Factor, DnaK and GroEL". Prokaryotic Systems Biology. Advances in Experimental Medicine and Biology. Vol. 883. pp. 271–94. doi:10.1007/978-3-319-23603-2_15. ISBN   978-3-319-23602-5. PMID   26621473.
  12. 1 2 Blatch GL, Edkins AL (2014-12-08). The networking of chaperones by co-chaperones: control of cellular protein homeostasis. Cham. ISBN   9783319117317. OCLC   898028354.{{cite book}}: CS1 maint: location missing publisher (link)
  13. Marquez, Jubert; Flores, Jessa; Kim, Amy Hyein; Nyamaa, Bayalagmaa; Nguyen, Anh Thi Tuyet; Park, Nammi; Han, Jin (2019-12-06). "Rescue of TCA Cycle Dysfunction for Cancer Therapy". Journal of Clinical Medicine. 8 (12): 2161. doi: 10.3390/jcm8122161 . ISSN   2077-0383. PMC   6947145 . PMID   31817761.
  14. Calloni G, Chen T, Schermann SM, Chang HC, Genevaux P, Agostini F, et al. (March 2012). "DnaK functions as a central hub in the E. coli chaperone network". Cell Reports. 1 (3): 251–64. doi: 10.1016/j.celrep.2011.12.007 . hdl: 10230/24950 . PMID   22832197.
  15. Prokaryotic systems biology. Krogan, Nevan J.,, Babu, Mohan. Cham. 2015-11-30. ISBN   978-3-319-23603-2. OCLC   930781755.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  16. Bisswanger H (2008). Enzyme kinetics : principles and methods (2nd rev. and updated ed.). Weinheim: Wiley-VCH. ISBN   978-3-527-31957-2. OCLC   225406378.
  17. Wyman C, Vasilikiotis C, Ang D, Georgopoulos C, Echols H (November 1993). "Function of the GrpE heat shock protein in bidirectional unwinding and replication from the origin of phage lambda". The Journal of Biological Chemistry. 268 (33): 25192–6. doi: 10.1016/S0021-9258(19)74587-6 . PMID   8227083.
  18. Arsène F, Tomoyasu T, Bukau B (April 2000). "The heat shock response of Escherichia coli". International Journal of Food Microbiology. 55 (1–3): 3–9. doi:10.1016/s0168-1605(00)00206-3. PMID   10791710.
  19. Tomoyasu T, Ogura T, Tatsuta T, Bukau B (November 1998). "Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli". Molecular Microbiology. 30 (3): 567–81. doi: 10.1046/j.1365-2958.1998.01090.x . PMID   9822822. S2CID   44947369.
  20. 1 2 Moro F, Muga A (May 2006). "Thermal adaptation of the yeast mitochondrial Hsp70 system is regulated by the reversible unfolding of its nucleotide exchange factor". Journal of Molecular Biology. 358 (5): 1367–77. doi:10.1016/j.jmb.2006.03.027. PMID   16600294.
  21. 1 2 3 The networking of chaperones by co-chaperones : control of cellular protein homeostasis. Blatch, Gregory L.,, Edkins, Adrienne Lesley. Cham. 2014-12-08. ISBN   978-3-319-11731-7. OCLC   898028354.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  22. MacKenzie JA, Payne RM (May 2007). "Mitochondrial protein import and human health and disease". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1772 (5): 509–23. doi:10.1016/j.bbadis.2006.12.002. PMC   2702852 . PMID   17300922.
  23. Dekker PJ, Pfanner N (July 1997). "Role of mitochondrial GrpE and phosphate in the ATPase cycle of matrix Hsp70". Journal of Molecular Biology. 270 (3): 321–7. doi:10.1006/jmbi.1997.1131. PMID   9237899.
  24. de Luna-Valdez LA, Villaseñor-Salmerón CI, Cordoba E, Vera-Estrella R, León-Mejía P, Guevara-García AA (June 2019). "Functional analysis of the Chloroplast GrpE (CGE) proteins from Arabidopsis thaliana". Plant Physiology and Biochemistry. 139: 293–306. doi:10.1016/j.plaphy.2019.03.027. PMID   30927692. S2CID   88523372.
  25. Schroda M, Vallon O, Whitelegge JP, Beck CF, Wollman FA (December 2001). "The chloroplastic GrpE homolog of Chlamydomonas: two isoforms generated by differential splicing". The Plant Cell. 13 (12): 2823–39. doi:10.1105/tpc.010202. PMC   139491 . PMID   11752390.
  26. Willmund F, Mühlhaus T, Wojciechowska M, Schroda M (April 2007). "The NH2-terminal domain of the chloroplast GrpE homolog CGE1 is required for dimerization and cochaperone function in vivo". The Journal of Biological Chemistry. 282 (15): 11317–28. doi: 10.1074/jbc.M608854200 . PMID   17289679.
  27. 1 2 3 4 Ch'ng JH, Chong KK, Lam LN, Wong JJ, Kline KA (January 2019). "Biofilm-associated infection by enterococci". Nature Reviews. Microbiology. 17 (2): 82–94. doi:10.1038/s41579-018-0107-z. PMID   30337708. S2CID   53018953.
  28. 1 2 Gilmore MS, Clewell DB, Ike Y, Shankar N (2014). Gilmore MS, Clewell DB, Ike Y, Shankar N (eds.). "Enterococci: From Commensals to Leading Causes of Drug Resistant Infection". Massachusetts Eye and Ear Infirmary. PMID   24649510.{{cite journal}}: Cite journal requires |journal= (help)
  29. Paganelli FL, Willems RJ, Leavis HL (January 2012). "Optimizing future treatment of enterococcal infections: attacking the biofilm?". Trends in Microbiology. 20 (1): 40–9. doi:10.1016/j.tim.2011.11.001. PMID   22169461.
  30. "What is Polystyrene? | Uses, Benefits, and Safety Facts". ChemicalSafetyFacts.org. 2014-05-01. Retrieved 2019-12-11.
  31. Bennett JE, Dolin R, Blaser MJ (2019-08-08). Mandell, Douglas, and Bennett's principles and practice of infectious diseases (Ninth ed.). Philadelphia, PA. ISBN   978-0-323-55027-7. OCLC   1118693541.{{cite book}}: CS1 maint: location missing publisher (link)
  32. 1 2 3 Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ (November 2016). "Streptococcus pyogenes adhesion and colonization". FEBS Letters. 590 (21): 3739–3757. doi:10.1002/1873-3468.12254. hdl: 10033/619157 . PMID   27312939. S2CID   205213711.