BAG1

Last updated
BAG1
Protein BAG1 PDB 1hx1.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases BAG1 , BAG-1, HAP, RAP46, BCL2 associated athanogene 1, BAG cochaperone 1
External IDs OMIM: 601497 MGI: 108047 HomoloGene: 3190 GeneCards: BAG1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004323
NM_001172415
NM_001349286
NM_001349299

NM_001171739
NM_009736

RefSeq (protein)

NP_001165886
NP_004314
NP_001336215
NP_001336228

NP_001165210
NP_033866

Location (UCSC) Chr 9: 33.25 – 33.26 Mb Chr 4: 40.94 – 40.95 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

BAG family molecular chaperone regulator 1 is a protein that in humans is encoded by the BAG1 gene. [5]

Function

The oncogene BCL2 is a membrane protein that blocks a step in a pathway leading to apoptosis or programmed cell death. The protein encoded by this gene binds to BCL2 and is referred to as BCL2-associated athanogene. It enhances the anti-apoptotic effects of BCL2 and represents a link between growth factor receptors and anti-apoptotic mechanisms. At least three protein isoforms are encoded by this mRNA through the use of alternative translation initiation sites, including a non-AUG site. [6]

Clinical significance

BAG gene has been implicated in age related neurodegenerative diseases as Alzheimer's. It has been demonstrated that BAG1 and BAG 3 regulate the proteasomal and lysosomal protein elimination pathways, respectively. [7]

Interactions

BAG1 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Hsp90</span> Heat shock proteins with a molecular mass around 90kDa

Hsp90 is a chaperone protein that assists other proteins to fold properly, stabilizes proteins against heat stress, and aids in protein degradation. It also stabilizes a number of proteins required for tumor growth, which is why Hsp90 inhibitors are investigated as anti-cancer drugs.

<span class="mw-page-title-main">Hop (protein)</span> Protein-coding gene in the species Homo sapiens

Hop, occasionally written HOP, is an abbreviation for Hsp70-Hsp90 Organizing Protein. It functions as a co-chaperone which reversibly links together the protein chaperones Hsp70 and Hsp90.

<span class="mw-page-title-main">HSPA8</span> Protein-coding gene in the species Homo sapiens

Heat shock 70 kDa protein 8 also known as heat shock cognate 71 kDa protein or Hsc70 or Hsp73 is a heat shock protein that in humans is encoded by the HSPA8 gene on chromosome 11. As a member of the heat shock protein 70 family and a chaperone protein, it facilitates the proper folding of newly translated and misfolded proteins, as well as stabilize or degrade mutant proteins. Its functions contribute to biological processes including signal transduction, apoptosis, autophagy, protein homeostasis, and cell growth and differentiation. It has been associated with an extensive number of cancers, neurodegenerative diseases, cell senescence, and aging.

<span class="mw-page-title-main">Apoptosis regulator BAX</span> Mammalian protein found in Homo sapiens

Apoptosis regulator BAX, also known as bcl-2-like protein 4, is a protein that in humans is encoded by the BAX gene. BAX is a member of the Bcl-2 gene family. BCL2 family members form hetero- or homodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein forms a heterodimer with BCL2, and functions as an apoptotic activator. This protein is reported to interact with, and increase the opening of, the mitochondrial voltage-dependent anion channel (VDAC), which leads to the loss in membrane potential and the release of cytochrome c. The expression of this gene is regulated by the tumor suppressor P53 and has been shown to be involved in P53-mediated apoptosis.

<span class="mw-page-title-main">TRAF6</span> Protein-coding gene in the species Homo sapiens

TRAF6 is a TRAF human protein.

<span class="mw-page-title-main">PPP1CA</span> Enzyme

Serine/threonine-protein phosphatase PP1-alpha catalytic subunit is an enzyme that in humans is encoded by the PPP1CA gene.

<span class="mw-page-title-main">Baculoviral IAP repeat-containing protein 2</span> Protein-coding gene in the species Homo sapiens

Baculoviral IAP repeat-containing protein 2 is a protein that in humans is encoded by the BIRC2 gene.

<span class="mw-page-title-main">PTGES3</span> Protein-coding gene in the species Homo sapiens

Prostaglandin E synthase 3 (cytosolic) is an enzyme that in humans is encoded by the PTGES3 gene.

<span class="mw-page-title-main">YWHAE</span> Protein-coding gene in the species Homo sapiens

14-3-3 protein epsilon is a protein that in humans is encoded by the YWHAE gene.

<span class="mw-page-title-main">RPS6KA2</span> Enzyme found in humans

Ribosomal protein S6 kinase alpha-2 is an enzyme that in humans is encoded by the RPS6KA2 gene.

<span class="mw-page-title-main">AH receptor-interacting protein</span> Protein-coding gene in the species Homo sapiens

AH receptor-interacting protein (AIP) also known as aryl hydrocarbon receptor-interacting protein, immunophilin homolog ARA9, or HBV X-associated protein 2 (XAP-2) is a protein that in humans is encoded by the AIP gene. The protein is a member of the FKBP family.

<span class="mw-page-title-main">ST13</span>

Hsc70-interacting protein also known as suppression of tumorigenicity 13 (ST13) is a protein that in humans is encoded by the ST13 gene.

<span class="mw-page-title-main">DNAJA1</span> Protein-coding gene in the species Homo sapiens

DnaJ homolog subfamily A member 1 is a protein that in humans is encoded by the DNAJA1 gene.

<span class="mw-page-title-main">BAG3</span> Protein-coding gene in the species Homo sapiens

BAG family molecular chaperone regulator 3 is a protein that in humans is encoded by the BAG3 gene. BAG3 is involved in chaperone-assisted selective autophagy.

<span class="mw-page-title-main">BAG2</span> Protein-coding gene in the species Homo sapiens

BAG family molecular chaperone regulator 2 is a protein that in humans is encoded by the BAG2 gene.

<span class="mw-page-title-main">TRAP1</span> Protein-coding gene in the species Homo sapiens

Heat shock protein 75 kDa, mitochondrial is a protein that in humans is encoded by the TRAP1 gene.

<span class="mw-page-title-main">Translocase of the outer membrane</span>

The translocase of the outer membrane (TOM) is a complex of proteins found in the outer mitochondrial membrane of the mitochondria. It allows movement of proteins through this barrier and into the intermembrane space of the mitochondrion. Most of the proteins needed for mitochondrial function are encoded by the nucleus of the cell. The outer membrane of the mitochondrion is impermeable to large molecules greater than 5000 Daltons. The TOM works in conjunction with the translocase of the inner membrane (TIM) to translocate proteins into the mitochondrion. Many of the proteins in the TOM complex, such as TOMM22, were first identified in Neurospora crassa and Saccharomyces cerevisiae. Many of the genes encoding these proteins are designated as TOMM (translocase of the outer mitochondrial membrane) complex genes.

<span class="mw-page-title-main">BAG4</span> Protein-coding gene in the species Homo sapiens

BAG family molecular chaperone regulator 4 is a protein that in humans is encoded by the BAG4 gene.

<span class="mw-page-title-main">BCL2L10</span> Protein-coding gene in the species Homo sapiens

Bcl-2-like protein 10 is a protein that in humans is encoded by the BCL2L10 gene.

<span class="mw-page-title-main">BAG5</span> Protein-coding gene in the species Homo sapiens

BAG family molecular chaperone regulator 5 is a protein that in humans is encoded by the BAG5 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000107262 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028416 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA, Reed JC (March 1995). "Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity". Cell. 80 (2): 279–84. doi: 10.1016/0092-8674(95)90410-7 . PMID   7834747. S2CID   17824475.
  6. "Entrez Gene: BAG1 BCL2-associated athanogene".
  7. Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (2009). "Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3". EMBO J. 28 (7): 889–901. doi:10.1038/emboj.2009.29. PMC   2647772 . PMID   19229298. *Lay summary in: "Old Cells Work Differently". Phys.org. March 1, 2009.
  8. Shatkina L, Mink S, Rogatsch H, Klocker H, Langer G, Nestl A, Cato AC (October 2003). "The cochaperone Bag-1L enhances androgen receptor action via interaction with the NH2-terminal region of the receptor". Mol. Cell. Biol. 23 (20): 7189–97. doi:10.1128/mcb.23.20.7189-7197.2003. PMC   230325 . PMID   14517289.
  9. Knee DA, Froesch BA, Nuber U, Takayama S, Reed JC (April 2001). "Structure-function analysis of Bag1 proteins. Effects on androgen receptor transcriptional activity". J. Biol. Chem. 276 (16): 12718–24. doi: 10.1074/jbc.M010841200 . PMID   11278763.
  10. Froesch BA, Takayama S, Reed JC (May 1998). "BAG-1L protein enhances androgen receptor function". J. Biol. Chem. 273 (19): 11660–6. doi: 10.1074/jbc.273.19.11660 . PMID   9565586.
  11. Wang HG, Takayama S, Rapp UR, Reed JC (July 1996). "Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1". Proc. Natl. Acad. Sci. U.S.A. 93 (14): 7063–8. Bibcode:1996PNAS...93.7063W. doi: 10.1073/pnas.93.14.7063 . PMC   38936 . PMID   8692945.
  12. Guzey M, Takayama S, Reed JC (Dec 2000). "BAG1L enhances trans-activation function of the vitamin D receptor". J. Biol. Chem. 275 (52): 40749–56. doi: 10.1074/jbc.M004977200 . PMID   10967105.
  13. Kullmann M, Schneikert J, Moll J, Heck S, Zeiner M, Gehring U, Cato AC (June 1998). "RAP46 is a negative regulator of glucocorticoid receptor action and hormone-induced apoptosis". J. Biol. Chem. 273 (23): 14620–5. doi: 10.1074/jbc.273.23.14620 . PMID   9603979.
  14. Schneikert J, Hübner S, Langer G, Petri T, Jäättelä M, Reed J, Cato AC (Dec 2000). "Hsp70-RAP46 interaction in downregulation of DNA binding by glucocorticoid receptor". EMBO J. 19 (23): 6508–16. doi:10.1093/emboj/19.23.6508. PMC   305849 . PMID   11101523.
  15. Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, Xie Z, Morimoto RI, Reed JC (August 1997). "BAG-1 modulates the chaperone activity of Hsp70/Hsc70". EMBO J. 16 (16): 4887–96. doi:10.1093/emboj/16.16.4887. PMC   1170124 . PMID   9305631.
  16. Takayama S, Xie Z, Reed JC (January 1999). "An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators". J. Biol. Chem. 274 (2): 781–6. doi: 10.1074/jbc.274.2.781 . PMID   9873016.
  17. Lin J, Hutchinson L, Gaston SM, Raab G, Freeman MR (August 2001). "BAG-1 is a novel cytoplasmic binding partner of the membrane form of heparin-binding EGF-like growth factor: a unique role for proHB-EGF in cell survival regulation". J. Biol. Chem. 276 (32): 30127–32. doi: 10.1074/jbc.M010237200 . PMID   11340068.
  18. Hung WJ, Roberson RS, Taft J, Wu DY (May 2003). "Human BAG-1 proteins bind to the cellular stress response protein GADD34 and interfere with GADD34 functions". Mol. Cell. Biol. 23 (10): 3477–86. doi:10.1128/mcb.23.10.3477-3486.2003. PMC   164759 . PMID   12724406.
  19. Liu R, Takayama S, Zheng Y, Froesch B, Chen GQ, Zhang X, Reed JC, Zhang XK (July 1998). "Interaction of BAG-1 with retinoic acid receptor and its inhibition of retinoic acid-induced apoptosis in cancer cells". J. Biol. Chem. 273 (27): 16985–92. doi: 10.1074/jbc.273.27.16985 . PMID   9642262.
  20. Matsuzawa S, Takayama S, Froesch BA, Zapata JM, Reed JC (May 1998). "p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1". EMBO J. 17 (10): 2736–47. doi:10.1093/emboj/17.10.2736. PMC   1170614 . PMID   9582267.

Further reading