PPP1R15A

Last updated
PPP1R15A
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PPP1R15A , GADD34, protein phosphatase 1 regulatory subunit 15A
External IDs OMIM: 611048 MGI: 1927072 HomoloGene: 8639 GeneCards: PPP1R15A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_014330

NM_008654

RefSeq (protein)

NP_055145

NP_032680

Location (UCSC) Chr 19: 48.87 – 48.88 Mb Chr 7: 45.17 – 45.18 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Protein phosphatase 1 regulatory subunit 15A, also known as growth arrest and DNA damage-inducible protein (GADD34), is a protein that in humans is encoded by the PPP1R15A gene. [5] [6] [7]

Contents

The Gadd34/MyD116 gene was originally discovered as a member in a set of gadd and MyD mammalian genes encoding acidic proteins that synergistically suppress cell growth. [8] Later on it has been characterized as a gene playing a role in ER stress-induced cell death, being a target of ATF4 that plays a role in ER-mediated cell death via promoting protein dephosphorylation of eIF2α and reversing translational inhibition. [9]

Function

This gene is a member of a group of genes whose transcript levels are increased following stressful growth arrest conditions and treatment with DNA-damaging agents. The induction of this gene by ionizing radiation occurs in certain cell lines regardless of p53 status, and its protein response is correlated with apoptosis following ionizing radiation. [7]

Interactions

PPP1R15A has been shown to interact with:

Related Research Articles

p21

p21Cip1, also known as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1, is a cyclin-dependent kinase inhibitor (CKI) that is capable of inhibiting all cyclin/CDK complexes, though is primarily associated with inhibition of CDK2. p21 represents a major target of p53 activity and thus is associated with linking DNA damage to cell cycle arrest. This protein is encoded by the CDKN1A gene located on chromosome 6 (6p21.2) in humans.

<span class="mw-page-title-main">PRKCD</span> Protein-coding gene in the species Homo sapiens

Protein kinase C delta type is an enzyme that in humans is encoded by the PRKCD gene.

<span class="mw-page-title-main">E2F1</span> Protein-coding gene in the species Homo sapiens

Transcription factor E2F1 is a protein that in humans is encoded by the E2F1 gene.

<span class="mw-page-title-main">PPP1CA</span> Enzyme

Serine/threonine-protein phosphatase PP1-alpha catalytic subunit is an enzyme that in humans is encoded by the PPP1CA gene.

<span class="mw-page-title-main">CDC25A</span> Protein-coding gene in the species Homo sapiens

M-phase inducer phosphatase 1 also known as dual specificity phosphatase Cdc25A is a protein that in humans is encoded by the cell division cycle 25 homolog A (CDC25A) gene.

<span class="mw-page-title-main">BAG1</span> Protein-coding gene in the species Homo sapiens

BAG family molecular chaperone regulator 1 is a protein that in humans is encoded by the BAG1 gene.

<span class="mw-page-title-main">PPP1CC</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein phosphatase PP1-gamma catalytic subunit is an enzyme that in humans is encoded by the PPP1CC gene.

<span class="mw-page-title-main">ATF6</span> Protein-coding gene in the species Homo sapiens

Activating transcription factor 6, also known as ATF6, is a protein that, in humans, is encoded by the ATF6 gene and is involved in the unfolded protein response.

<span class="mw-page-title-main">PPP1CB</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein phosphatase PP1-beta catalytic subunit is an enzyme that in humans is encoded by the PPP1CB gene.

<span class="mw-page-title-main">CDC25C</span> Protein-coding gene in the species Homo sapiens

M-phase inducer phosphatase 3 is an enzyme that in humans is encoded by the CDC25C gene.

<span class="mw-page-title-main">SMARCB1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 is a protein that in humans is encoded by the SMARCB1 gene.

<span class="mw-page-title-main">Pancreatic polypeptide receptor 1</span> Protein-coding gene in the species Homo sapiens

Pancreatic polypeptide receptor 1, also known as Neuropeptide Y receptor type 4, is a protein that in humans is encoded by the PPYR1 gene.

<span class="mw-page-title-main">GADD45A</span> Protein-coding gene in the species Homo sapiens

Growth arrest and DNA-damage-inducible protein GADD45 alpha is a protein that in humans is encoded by the GADD45A gene.

<span class="mw-page-title-main">PTPN2</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 2 is an enzyme that in humans is encoded by the PTPN2 gene.

<span class="mw-page-title-main">TP53BP2</span> Protein-coding gene in the species Homo sapiens

Apoptosis-stimulating of p53 protein 2 (ASPP2) also known as Bcl2-binding protein (Bbp) and tumor suppressor p53-binding protein 2 (p53BP2) is a protein that in humans is encoded by the TP53BP2 gene. Multiple transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">PLK3</span> Protein-coding gene in the species Homo sapiens

Polo-like kinase 3 (Drosophila), also known as PLK3, is an enzyme which in humans is encoded by the PLK3 gene.

<span class="mw-page-title-main">PLK2</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase PLK2 is an enzyme that in humans is encoded by the PLK2 gene.

<span class="mw-page-title-main">MAPK10</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 10 also known as c-Jun N-terminal kinase 3 (JNK3) is an enzyme that in humans is encoded by the MAPK10 gene.

<span class="mw-page-title-main">PPP1R14C</span> Protein-coding gene in the species Homo sapiens

Protein phosphatase 1 regulatory subunit 14C is an enzyme that in humans is encoded by the PPP1R14C gene.

<span class="mw-page-title-main">TP53-inducible glycolysis and apoptosis regulator</span> Protein-coding gene in the species Homo sapiens

The TP53-inducible glycolysis and apoptosis regulator (TIGAR) also known as fructose-2,6-bisphosphatase TIGAR is an enzyme that in humans is encoded by the C12orf5 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000087074 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000040435 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hollander MC, Zhan Q, Bae I, Fornace AJ Jr (Jul 1997). "Mammalian GADD34, an apoptosis- and DNA damage-inducible gene". J Biol Chem. 272 (21): 13731–7. doi: 10.1074/jbc.272.21.13731 . PMID   9153226.
  6. Korabiowska M, Betke H, Kellner S, Stachura J, Schauer A (Jan 1998). "Differential expression of growth arrest, DNA damage genes and tumour suppressor gene p53 in naevi and malignant melanomas". Anticancer Res. 17 (5A): 3697–700. PMID   9413226.
  7. 1 2 "Entrez Gene: PPP1R15A protein phosphatase 1, regulatory (inhibitor) subunit 15A".
  8. Zhan Q, Lord KA, Alamo I, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA, Fornace AJ (April 1994). "The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth". Mol. Cell. Biol. 14 (4): 2361–71. doi:10.1128/mcb.14.4.2361. PMC   358603 . PMID   8139541.
  9. Sano R, Reed JC (July 2013). "ER stress-induced cell death mechanisms". Biochim. Biophys. Acta. 1833 (12): 3460–70. doi:10.1016/j.bbamcr.2013.06.028. PMC   3834229 . PMID   23850759.
  10. 1 2 Hung WJ, Roberson RS, Taft J, Wu DY (2003). "Human BAG-1 proteins bind to the cellular stress response protein GADD34 and interfere with GADD34 functions". Mol. Cell. Biol. 23 (10): 3477–86. doi:10.1128/MCB.23.10.3477-3486.2003. PMC   164759 . PMID   12724406.
  11. Grishin AV, Azhipa O, Semenov I, Corey SJ (2001). "Interaction between growth arrest-DNA damage protein 34 and Src kinase Lyn negatively regulates genotoxic apoptosis". Proc. Natl. Acad. Sci. U.S.A. 98 (18): 10172–7. Bibcode:2001PNAS...9810172G. doi: 10.1073/pnas.191130798 . PMC   56934 . PMID   11517336.
  12. 1 2 Adler HT, Chinery R, Wu DY, Kussick SJ, Payne JM, Fornace AJ, Tkachuk DC (1999). "Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins". Mol. Cell. Biol. 19 (10): 7050–60. doi:10.1128/mcb.19.10.7050. PMC   84700 . PMID   10490642.
  13. 1 2 3 4 Wu DY, Tkachuck DC, Roberson RS, Schubach WH (2002). "The human SNF5/INI1 protein facilitates the function of the growth arrest and DNA damage-inducible protein (GADD34) and modulates GADD34-bound protein phosphatase-1 activity". J. Biol. Chem. 277 (31): 27706–15. doi: 10.1074/jbc.M200955200 . PMID   12016208.
  14. 1 2 3 Connor JH, Weiser DC, Li S, Hallenbeck JM, Shenolikar S (2001). "Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1". Mol. Cell. Biol. 21 (20): 6841–50. doi:10.1128/MCB.21.20.6841-6850.2001. PMC   99861 . PMID   11564868.
  15. Hasegawa T, Isobe K (1999). "Evidence for the interaction between Translin and GADD34 in mammalian cells". Biochim. Biophys. Acta. 1428 (2–3): 161–8. doi:10.1016/s0304-4165(99)00060-4. PMID   10434033.

Further reading