HAVCR1 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | HAVCR1 , HAVCR, HAVCR-1, KIM-1, KIM1, TIM, TIM-1, TIM1, TIMD-1, TIMD1, CD365, hepatitis A virus cellular receptor 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 606518 HomoloGene: 134424 GeneCards: HAVCR1 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Hepatitis A virus cellular receptor 1 (HAVcr-1) also known as T-cell immunoglobulin and mucin domain 1 (TIM-1) is a protein that in humans is encoded by the HAVCR1 gene. [3] [4] [5]
It is also known as KIM-1 Kidney Injury Molecule -1, which is a type 1 transmembrane protein the most highly upregulated in injured kidneys by various types of insults. [6] Its upregulation during renal injury has been found in the kidneys of the vertebrates such as Zebrafish and humans.
The hepatitis A virus cellular receptor 1 (HAVCR1/TIM-1), is a member of the TIM (T cell transmembrane, immunoglobulin, and mucin) gene family, which plays critical roles in regulating immune cell activity especially regarding the host response to viral infection. TIM-1 is also involved in allergic response, asthma, and transplant tolerance.
The TIM gene family was first cloned from the mouse model of asthma in 2001. [4] Subsequently, it was demonstrated that members of the TIM gene family including TIM-1 participate in host immune response. The mouse TIM gene family contains eight members (TIM-1-8) while only three TIM genes (TIM-1, TIM-3, and TIM-4) have been identified in humans.
TIM genes belong to type I cell-surface glycoproteins, which include an N-terminal immunoglobulin (Ig)-like domain, a mucin domain with distinct length, a single transmembrane domain, and a C-terminal short cytoplasmic tail. The localization and functions of TIM genes are divergent between each member. TIM-1 is preferentially expressed on Th2 cells and has been identified as a stimulatory molecule for T-cell activation. [7] TIM-3 is preferentially expressed on Th1 and Tc1 cells and function as an inhibitory molecule, which mediated apoptosis of Th1 and Tc1 cells. [8] TIM-4 is preferentially expressed on antigen-presenting cells, modulating the phagocytosis of apoptotic cells by interacting with phosphatidylserine (PS) exposed on apoptotic cell surface. [9]
TIM genes are also involved in host-virus interaction. As receptors for phosphatidylserine, TIM proteins bind many families of viruses [filovirus, flavivirus, New World arenavirus and alphavirus] that include viruses such as dengue and ebola. Entry of Lassa fever virus, influenza A virus, and SARS coronavirus were not affected by TIM-1 expression. TIM-1 and TIM-4 enhanced viral entry more than TIM-3. [10]
TIM-1 has been identified as an attachment factor for exosome-packaged hepatitis A virus (HAV). [11] Infectious HAV-containing exosomes are internalized by HAVCR1, but true entry into the cytosol is achieved through fusion with NPC1. It has also been shown that non-exosomal HAV (encapsidated) infection occurs independent of HAVCR1 expression. By using an expression cloning library, IgA has been demonstrated as a specific ligand of TIM-1. The association of TIM-1 and IgA was able to enhance the virus-receptor interaction. [12]
Recently, TIM-1 has been shown to be a receptor or cofactor for Ebola virus entry. TIM-1 binds to Ebola virus glycoproteins (GP) and mediates Ebola virus cellular entry by increasing Ebola virus infectivity in cell lines with a low susceptibility. Moreover, reducing expression of endogenous TIM-1 in highly permissive cell lines decreased Ebola virus infectivity. [13] Furthermore, TIM-1 IgV domain specific antibody ARD5 inhibited Ebola virus infectivity, indicating that TIM-1 was critical for Ebola virus entry. Also, TIM-1 expression on human mucosal epithelial cells from the trachea, cornea and conjunctiva demonstrated the correlation of TIM-1 expression feature and viral entry routes.
TIM-1 has been identified as a cellular factor for Dengue virus entry by overexpression of TIM-1 on poorly susceptible cell lines for Dengue virus infection. TIM-1 enhanced dengue virus infectivity by 500-fold, particularly increased virus internalization. TIM-1 directly interacted with Dengue virus particle by recognizing PS on the virion surface. [14] In addition, the Dengue virus susceptibility of different cell lines was consistent with endogenous expression level of TIM-1 gene in such cell lines, suggesting that TIM-1 is crucial for Dengue virus entry.
An antibody (Ab) is the secreted form of a B cell receptor; the term immunoglobulin (Ig) can refer to either the membrane-bound form or the secreted form of the B cell receptor, but they are, broadly speaking, the same protein, and so the terms are often treated as synonymous. Antibodies are large, Y-shaped proteins belonging to the immunoglobulin superfamily which are used by the immune system to identify and neutralize foreign objects such as bacteria and viruses, including those that cause disease. Antibodies can recognize virtually any size antigen with diverse chemical compositions from molecules. Each antibody recognizes one or more specific antigens. This term literally means "antibody generator", as it is the presence of an antigen that drives the formation of an antigen-specific antibody. Each tip of the "Y" of an antibody contains a paratope that specifically binds to one particular epitope on an antigen, allowing the two molecules to bind together with precision. Using this mechanism, antibodies can effectively "tag" a microbe or an infected cell for attack by other parts of the immune system, or can neutralize it directly.
Immunoglobulin M (IgM) is the largest of several isotypes of antibodies that are produced by vertebrates. IgM is the first antibody to appear in the response to initial exposure to an antigen; causing it to also be called an acute phase antibody. In humans and other mammals that have been studied, plasmablasts in the spleen are the main source of specific IgM production.
DC-SIGN also known as CD209 is a protein which in humans is encoded by the CD209 gene.
V(D)J recombination is the mechanism of somatic recombination that occurs only in developing lymphocytes during the early stages of T and B cell maturation. It results in the highly diverse repertoire of antibodies/immunoglobulins and T cell receptors (TCRs) found in B cells and T cells, respectively. The process is a defining feature of the adaptive immune system.
B-lymphocyte antigen CD19, also known as CD19 molecule, B-Lymphocyte Surface Antigen B4, T-Cell Surface Antigen Leu-12 and CVID3 is a transmembrane protein that in humans is encoded by the gene CD19. In humans, CD19 is expressed in all B lineage cells. Contrary to some early doubts, human plasma cells do express CD19, as confirmed by others. CD19 plays two major roles in human B cells: on the one hand, it acts as an adaptor protein to recruit cytoplasmic signaling proteins to the membrane; on the other, it works within the CD19/CD21 complex to decrease the threshold for B cell receptor signaling pathways. Due to its presence on all B cells, it is a biomarker for B lymphocyte development, lymphoma diagnosis and can be utilized as a target for leukemia immunotherapies.
CD16, also known as FcγRIII, is a cluster of differentiation molecule found on the surface of natural killer cells, neutrophils, monocytes, macrophages, and certain T cells. CD16 has been identified as Fc receptors FcγRIIIa (CD16a) and FcγRIIIb (CD16b), which participate in signal transduction. The most well-researched membrane receptor implicated in triggering lysis by NK cells, CD16 is a molecule of the immunoglobulin superfamily (IgSF) involved in antibody-dependent cellular cytotoxicity (ADCC). It can be used to isolate populations of specific immune cells through fluorescent-activated cell sorting (FACS) or magnetic-activated cell sorting, using antibodies directed towards CD16.
The neonatal fragment crystallizable (Fc) receptor is a protein that in humans is encoded by the FCGRT gene. It is an IgG Fc receptor which is similar in structure to the MHC class I molecule and also associates with beta-2-microglobulin. In rodents, FcRn was originally identified as the receptor that transports maternal immunoglobulin G (IgG) from mother to neonatal offspring via mother's milk, leading to its name as the neonatal Fc receptor. In humans, FcRn is present in the placenta where it transports mother's IgG to the growing fetus. FcRn has also been shown to play a role in regulating IgG and serum albumin turnover. Neonatal Fc receptor expression is up-regulated by the proinflammatory cytokine, TNF, and down-regulated by IFN-γ.
The Joining (J) chain is a protein component that links monomers of antibodies IgM and IgA to form polymeric antibodies capable of secretion. The J chain is well conserved in the animal kingdom, but its specific functions are yet to be fully understood. It is a 137 residue polypeptide, encoded by the IGJ gene.
Polymeric immunoglobulin receptor (pIgR) is a transmembrane protein that in humans is encoded by the PIGR gene. It is an Fc receptor which facilitates the transcytosis of the soluble polymeric isoforms of immunoglobulin A and immunoglobulin M (pIg) and immune complexes. pIgRs are mainly located on the epithelial lining of mucosal surfaces of the gastrointestinal tract. The composition of the receptor is complex, including 6 immunoglobulin-like domains, a transmembrane region, and an intracellular domain. pIgR expression is under the strong regulation of cytokines, hormones, and pathogenic stimuli.
Leukocyte immunoglobulin-like receptor subfamily B member 1 is a protein that in humans is encoded by the LILRB1 gene.
Poliovirus receptor-related 1 (PVRL1), also known as nectin-1 and CD111 (formerly herpesvirus entry mediator C, HVEC) is a human protein of the immunoglobulin superfamily (IgSF), also considered a member of the nectins. It is a membrane protein with three extracellular immunoglobulin domains, a single transmembrane helix and a cytoplasmic tail. The protein can mediate Ca2+-independent cellular adhesion further characterizing it as IgSF cell adhesion molecule (IgSF CAM).
Leukocyte-associated immunoglobulin-like receptor 1 is a protein that in humans is encoded by the LAIR1 gene. LAIR1 has also been designated as CD305.
Leukocyte immunoglobulin-like receptor subfamily B member 2 is a protein that in humans is encoded by the LILRB2 gene.
Leukocyte immunoglobulin-like receptor subfamily B member 4 is a protein that in humans is encoded by the LILRB4 gene.
Immunoglobulin iota chain is a protein that in humans is encoded by the VPREB1 gene. VPREB1 has also recently been designated CD179A.
Hepatitis A virus cellular receptor 2 (HAVCR2), also known as T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), is a protein that in humans is encoded by the HAVCR2 (TIM-3)gene. HAVCR2 was first described in 2002 as a cell surface molecule expressed on IFNγ producing CD4+ Th1 and CD8+ Tc1 cells. Later, the expression was detected in Th17 cells, regulatory T-cells, and innate immune cells. HAVCR2 receptor is a regulator of the immune response.
Cluster of differentiation CD79A also known as B-cell antigen receptor complex-associated protein alpha chain and MB-1 membrane glycoprotein, is a protein that in humans is encoded by the CD79A gene.
CD79b molecule, immunoglobulin-associated beta, also known as CD79B, is a human gene.
T-cell immunoglobulin and mucin domain containing 4 (TIMD-4) also known as T-cell membrane protein 4 (TIM-4) is a protein in humans that is encoded by the TIMD4 gene. TIM-4 genes are in mouse present on chromosome 11B1.1 and in humans on chromosome 5q33.2. TIM-4 contains IgV domain with integrin-binding site as well as a unique metal-ion-dependent ligand binding site for phosphatidylserine. TIM-4 also contains mucin domain with high levels of O-glycosylation. In comparison to other TIM proteins it does not contain a tyrosine-phosphorylation motif in its intracellular tail domain.
Transmembrane immunoglobulin and munin domain (TIM) proteins are a family of cell surface immunomodulatory proteins.