Discovery | |
---|---|
Discovered by | Butler et al. |
Discovery site | California, United States |
Discovery date | 5 August 2005 Confirmed 27 May 2007 |
Doppler spectroscopy | |
Orbital characteristics | |
0.229 AU (34,300,000 km) [1] | |
Eccentricity | 0.15 [1] |
37.82 [1] d | |
2,454,370 ± 380 [1] | |
102 [1] | |
Semi-amplitude | 4.65 ± 0.59 [1] |
Star | HD 11964 |
HD 11964 c is an extrasolar planet approximately 110 light-years away in the constellation of Cetus. The planet was discovered in a close-orbit around the yellow subgiant star HD 11964. The planet has a minimum mass 35 times the mass of Earth and is located in a mildly eccentric orbit which takes almost 38 days to complete. HD 11964 c was a possible planet discovered on the same day as HD 11964 b in 2005. HD 11964 c was first proposed in a paper published in 2007, [2] and finally confirmed with new data presented in a review of multi-planet systems which appeared on the arXiv preprint website in 2008. [1]
Some sources have used the designation "HD 11964 b" for this planet, [3] [4] however in their review of the properties of multi-planet extrasolar planetary systems, the discovery team has stated that the correct designation for this planet is HD 11964 c and the reversed system was due to confusion related to private communications between various groups of astronomers. [1]
HD 169830 is a star in the southern constellation of Sagittarius. It has a yellow-white hue and is dimly visible to the naked eye with an apparent visual magnitude of +5.90. The star is located at a distance of 120 light years from the Sun based on parallax. It is drifting closer with a radial velocity of −17.3 km/s, and is predicted to come as close as 20.7 ly (6.4 pc) in 2.08 million years. HD 169830 is known to be orbited by two large Jupiter-like exoplanets.
HD 187123 is a single, yellow-hued star with two exoplanetary companions in the northern constellation of Cygnus. It has an apparent visual magnitude of 7.83, making it an 8th magnitude star that is too faint to be visible with the naked eye. However, it should be easy target with binoculars or small telescope. The system is located at a distance of 150 light years from the Sun based on parallax measurements, but is drifting closer with a radial velocity of −17 km/s.
HD 28185 is a yellow dwarf star similar to the Sun located 128 light-years away from Earth in the constellation Eridanus. The designation HD 28185 refers to its entry in the Henry Draper catalogue. The star is known to possess one long-period extrasolar planet.
HD 142 is a wide binary star system in the southern constellation of Phoenix. The main component has a yellow-white hue and is dimly visible to the naked eye with an apparent visual magnitude of 5.7. The system is located at a distance of 85.5 light years from the Sun based on parallax measurements, and is drifting further away with a radial velocity of +6 km/s.
HD 28185 b is an extrasolar planet 128 light-years away from Earth in the constellation of Eridanus. The planet was discovered orbiting the Sun-like star HD 28185 in April 2001 as a part of the CORALIE survey for southern extrasolar planets, and its existence was independently confirmed by the Magellan Planet Search Survey in 2008. HD 28185 b orbits its sun in a circular orbit that is at the inner edge of its star's habitable zone.
HD 217107 c is an extrasolar planet approximately 64 light-years away from Earth in the constellation of Pisces. The planet was the second planet to be discovered orbiting the star HD 217107. HD 217107 c's existence was hypothesized in 1998 due to the eccentricity of the inner planet's orbit and confirmed in 2005 when radial velocity studies of the star indicated another, more distant and massive companion orbiting the star. The planet has an eccentric orbit lasting on order of a decade.
Doppler spectroscopy is an indirect method for finding extrasolar planets and brown dwarfs from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star. As of November 2022, about 19.5% of known extrasolar planets have been discovered using Doppler spectroscopy.
HD 11964 is a binary star system located 110 light-years away from the Sun in the equatorial constellation of Cetus. It is visible in binoculars or a telescope but is too faint to be seen with the naked eye, having an apparent visual magnitude of 7.51. The system is drifting closer to the Sun with a radial velocity of −9 km/s. Two extrasolar planets have been confirmed to orbit the primary.
HD 11964 b is an extrasolar planet, a gas giant like Jupiter approximately 110 light-years away in the constellation of Cetus. The planet orbits the yellow subgiant star HD 11964 in a nearly-circular orbit, taking over 5 years to complete a revolution around the star at a distance of 3.34 astronomical units.
HD 154345 is a star in the northern constellation of Hercules. With an apparent visual magnitude of +6.76 it is a challenge to view with the naked eye, but using binoculars it is an easy target. The distance to this star is 59.6 light years based on parallax, but it is drifting closer with a radial velocity of −47 km/s. At least one exoplanet is orbiting this star.
HD 68988 is a star in the northern constellation of Ursa Major. It has been given the proper name Násti, which means star in the Northern Sami language. The name was selected in the NameExoWorlds campaign by Norway, during the 100th anniversary of the IAU. HD 68988 is too faint to be seen with the naked eye, having an apparent visual magnitude of 8.20. The star is located at a distance of 199 light years from the Sun based on parallax. It is drifting closer with a radial velocity of −69 km/s and is predicted to come as close as 78 light-years in 617,000 years.
HIP 14810 b is a massive hot Jupiter approximately 165 light-years away in the constellation of Aries. It has mass 3.88 times that of Jupiter and orbits at 0.0692 AU. It was discovered by the N2K Consortium in 2006 and the discovery paper was published in 2007. Prior to this a preliminary orbit had been published in the Catalog of Nearby Exoplanets.
HIP 14810 c is an extrasolar planet approximately 165 light-years away in the constellation of Aries. This planet has mass at least 1.28 times that of Jupiter and orbits at 0.545 AU in an eccentric orbit. The planet was discovered by the N2K Consortium in 2006 and announced in a paper published in 2007. With the discovery of a third planet in the system which was announced in 2009, the parameters of this planet were revised.
HD 187123 b is a typical "hot Jupiter" located approximately 150 light-years away in the constellation of Cygnus, orbiting the star HD 187123. It has a mass about half that of Jupiter and it orbits in a very tight, round orbit around the star every three days.
HD 187123 c is an extrasolar planet located approximately 156 light-years away in the constellation of Cygnus, orbiting the star HD 187123. This planet was published in 2006. The radius of the planet's orbit is 4.80 AU, 113 times more distant from the star than first companion. This takes 10 years to orbit. As it is typical for very long-period planets, the orbit is eccentric, referring to as "eccentric Jupiter". At periastron, the orbital distance is 3.60 AU and at apastron, the distance is 6.00 AU. The planet's mass is nearly 2 times that of Jupiter, but is likely to be smaller in size than the inner planet.
HD 183263 b is an extrasolar planet orbiting the star HD 183263. This planet has a minimum mass of 3.6 times more than Jupiter and takes 625 days to orbit the star. The planet was discovered on January 25, 2005 using multiple Doppler measurements of five nearby FGK main-sequence stars and subgiants obtained during the past 4–6 years at the Keck Observatory in Mauna Kea, Hawaii. These stars, namely, HD 183263, HD 117207, HD 188015, HD 45350, and HD 99492, all exhibit coherent variations in their Doppler shifts consistent with a planet in Keplerian motion, and the results were published in a paper by Geoffrey Marcy et al. Photometric observations were acquired for four of the five host stars with an automatic telescope at Fairborn Observatory. The lack of brightness variations in phase with the radial velocities supports planetary-reflex motion as the cause of the velocity variations. An additional planet in the system was discovered later.
HD 188015 b is an extrasolar planet announced by the California and Carnegie Planet Search team in 2005. Like majority of known planets, it was discovered using the radial velocity method.
HD 210277 b is an extrasolar planet orbiting the star HD 210277. It was discovered in September 1998 by the California and Carnegie Planet Search team using the highly successful radial velocity method. The planet is at least 24% more massive than Jupiter. The mean distance of the planet from the star is slightly more than Earth's distance from the Sun. However, the orbit is very eccentric, so at periastron this distance is almost halved, and at apastron it is as distant as Mars is from the Sun.
HD 24040 b is a long-period exoplanet taking approximately 3500 days to orbit at 4.6 astronomical units in an almost circular orbit. It has a minimum mass 4 times that of Jupiter.
HD 68988 c is an exoplanet located approximately 192 light-years away in the constellation of Ursa Major, orbiting the star HD 68988. The parameters including period and eccentricity are highly uncertain. The semimajor axis was initially believed to be 5.32 AU with an orbital period of 4100 ± 7300 days. The planetary orbit was significantly refined in 2021.