Harding Pegmatite Mine

Last updated

Harding Mine
View Looking East from the Harding Pegmatite Mine near Dixon, New Mexico USA 03.jpg
The Harding Pegmatite Mine is a former beryl quarry in New Mexico.
Location
USA New Mexico location map.svg
Schlaegel und Eisen nach DIN 21800.svg
Harding Mine
Location Picuris Mountains
StateNew Mexico
CountryUnited States
Coordinates 36°11′34″N105°47′41″W / 36.1928°N 105.7946°W / 36.1928; -105.7946
Production
ProductsBeryl, lithium, tantalum
Type Adit mine
History
Discovered1918;106 years ago (1918)
Opened1906;118 years ago (1906)
Closed1958;66 years ago (1958)
Owner
Company University of New Mexico
Year of acquisition1979;45 years ago (1979) [1]

The Harding Pegmatite Mine is a former adit mine that extracted lithium, tantalum, and beryllium from a Precambrian pegmatite sill. It ceased operations in 1958 and its owner, Arthur Montgomery, donated it to the University of New Mexico, which runs the site as an outdoor geology laboratory with mineral collecting permitted on a small scale. [2] [1]

Contents

Main quarry of Harding Pegmatite Mine Harding Mine.jpg
Main quarry of Harding Pegmatite Mine

History

Although the quartz pegmatite had attracted the attention of prospectors since before 1900, the extensive deposits of lepidolite were not recognized until 1918 by Joseph J. Peyer. Peyer and his partners mined the ore body with explosives, sorted the ore by hand, and hauled the ore to Embudo by wagon, where the nearest rail line was located. At that time, the chief use of lithium was in specialty glass. However, the ore was contaminated with unrecognized tantalite which caused serious difficulties with its use, and production ceased in 1924.

That same year, the Embudo Mining Company was organized by J.L. Danziger and began construction of a mill near Embudo. This was completed and mining resumed in 1927. The main ore body was mined out in 1929 and the mine closed again in 1930. About 3,500 tons of ore were produced with a value of about $140,000. This represented a modest profit over the three years of mill operations but a net loss for the entire period of mining.

High demand for tantalum in 1942 for wartime production, and reports going back to 1931 of microlite at the Harding Mine, led Arthur Montgomery to investigate the old workings. He found considerable rich material in the mine dumps and at the east end of the workings, and he obtained a lease purchase contract on the mine property. With a team of six local miners, ore was extracted with chisels and sorted by hand. Concentration of the small but rich quantity of highly valuable ore was problematic, but the U.S. Bureau of Mines Testing Laboratory in Rolla, Missouri, used an experimental gravity separation method to process 33.5 tons of ore and extracted 6137 pounds of 77.55% niobium-tantalum oxide. This was the largest unit of U.S. tantalum production ever recorded. However, a small mill built at Rinconada failed to meet its rated capacity of 12 tons per day.

Lithium ores were also mined during this period, and by the time mining paused in 1947, the mine had yielded 41 tons of high-grade spodumene, 558 tons of lepidolite ore, nearly 500 pounds of placer tantalite-columbite containing an average of 43% tantalum oxide, and 22,116 pounds of microlite concentrates containing an average of 68% tantalum oxide and 7% niobium oxide. The operations were profitable enough to allow Montgomery to purchase the property outright.

During 1943, the U.S. Bureau of Mines drilled 39 exploratory cores south of the main workings. The cores showed enough content of spodumene and tantalum-niobium minerals to be classified as milling-grade ore. This made the Harding the first U.S. pegmatite mine to have blocked-out reserves. These are still in place and could conceivably be mined in the future.

Beryl had been recognized as a minor accessory mineral at the mine from its inception. However, this was so easily confused with the abundant albite and quartz of the pegmatite that it was not until 1942 that the U.S. Geological Survey recognized that beryl was abundant at the mine. In 1944 Montgomery found a single block of beryl weighing almost 100 pounds at one of the dumps, then uncovered a lens of beryl at the west end of the workings. This produced 23 tons of ore containing 11% beryllium oxide. However, full-scale beryllium mining did not begin until 1950. Ore production reached a ton per day, in spite of the difficulties of hand sorting the beryl from the nearly indistinguishable feldspar and quartz gangue.

In 1950 and 1951, beryl production exceeded 150 tons, making New Mexico the leading beryl-producing state. Production averaged 100 tons per year until 1950, when the death of Montgomery's partner, Flaudio Griego, ended mining operations. Operations were simple, using a crew of four men to mine and hand sort the ore, which was taken out on "Beryl", the mine's mule. Production totaled 690 tons of high-grade ore with 11.2% beryllium oxide and 184 tons of lower-grade ore with 5.5% beryllium oxide, as well as small production of lepidolite. [2]

Geology

The Harding pegmatite intrudes along the boundary between the amphibolite and schist facies of the Vadito Group. [2] [3] The various outcroppings form a belt about 2500 feet long and 150 to 500 feet wide. Radiometric ages are somewhat discordant, ranging from 1260 Mya for four Harding muscovites to 1350 Mya for a Harding lepidolite. A more recent "average age" is given as 1336 Mya, and discrepancies may be due to contamination from the host rock. [1] However, the pegmatite is thought to be up to 100 million years younger than any nearby granite plutons and does not seem to be genetically associated with any of them.

The main mine workings are exposed over a length of about 1100 feet and a breadth of up to 250 feet. The pegmatite is zoned subhorizontally into the following zones:

Massive quartz zone of the Harding Mine showing adits Hadring Mine quartz zone.jpg
Massive quartz zone of the Harding Mine showing adits
Quartz/rose muscovite zone of the Harding zoned pegmatite Harding quarz rose muscovite zone.jpg
Quartz/rose muscovite zone of the Harding zoned pegmatite
"Spotted rock" of the Harding pegmatite Harding spotted rock.jpg
"Spotted rock" of the Harding pegmatite

These zones are mirrored at the base of the pegmatite, except that the lower zones tend to be poorer in beryl and more aplitic than pegmatitic. The abundant fine-grained albite is sugary in appearance.

Aplite zone at the Harding Mine Harding aplite.jpg
Aplite zone at the Harding Mine

Additional accessory minerals, of no economic importance but of interest to mineral collectors, include almandine, spessartine, and pyrochlore. [2]

Geochemical analysis and analysis of fluid inclusions suggests the pegmatite was injected at temperatures near 600 °C at a depth of 6.0 to 7.5 km (2.0 to 2.5 kbar). The primary zones crystallized under closed-system conditions a temperature of 525 to 425 °C. A separate immiscible CO2-H2O volatile-rich fluid was present in the pegmatite system during crystallization of the primary pegmatite zones. The sugary albite zone formed from a residual Na-rich magma as a response to late-stage pressure release. Saline brines caused lepidolite replacement at temperatures near 265 °C. Finally, small pockets of quartz, feldspar and microlite were crystallized.

Ownership

In 1974, Arthur Montgomery offered to donate the property to the University of New Mexico. The university leased the property for four years while making numerous improvements, which include a walking tour of the mine. Because the mine property included both patented and unpatented claims, transfer of the title required an act of Congress (Senate Bill 1403). The United States retains the right to mine strategic minerals should it become necessary for the security of the United States.

Persons wishing to visit the mine must contact the chairman, Department of Geology, University of New Mexico, 87131 to obtain permission (which is almost always granted) and release forms. [1]

Related Research Articles

<span class="mw-page-title-main">Pegmatite</span> Igneous rock with very large interlocked crystals

A pegmatite is an igneous rock showing a very coarse texture, with large interlocking crystals usually greater in size than 1 cm (0.4 in) and sometimes greater than 1 meter (3 ft). Most pegmatites are composed of quartz, feldspar, and mica, having a similar silicic composition to granite. However, rarer intermediate composition and mafic pegmatites are known.

<span class="mw-page-title-main">Lepidolite</span> Light micas with substantial lithium

Lepidolite is a lilac-gray or rose-colored member of the mica group of minerals with chemical formula K(Li,Al)3(Al,Si,Rb)4O10(F,OH)2. It is the most abundant lithium-bearing mineral and is a secondary source of this metal. It is the major source of the alkali metal rubidium.

<span class="mw-page-title-main">Spodumene</span> Pyroxene, inosilicate mineral rich in lithium

Spodumene is a pyroxene mineral consisting of lithium aluminium inosilicate, LiAl(SiO3)2, and is a commercially important source of lithium. It occurs as colorless to yellowish, purplish, or lilac kunzite (see below), yellowish-green or emerald-green hiddenite, prismatic crystals, often of great size. Single crystals of 14.3 m (47 ft) in size are reported from the Black Hills of South Dakota, United States.

<span class="mw-page-title-main">Zinnwaldite</span>

Zinnwaldite, KLiFeAl(AlSi3)O10(OH,F)2, potassium lithium iron aluminium silicate hydroxide fluoride is a silicate mineral in the mica group. The IMA status is as a series between siderophyllite (KFe2Al(Al2Si2)O10(F,OH)2) and polylithionite (KLi2AlSi4O10(F,OH)2) and not considered a valid mineral species.

<span class="mw-page-title-main">Lithiophilite</span>

Lithiophilite is a mineral containing the element lithium. It is lithium manganese(II) phosphate with chemical formula LiMnPO4. It occurs in pegmatites often associated with triphylite, the iron end member in a solid solution series. The mineral with intermediate composition is known as sicklerite and has the chemical formula Li(Mn,Fe)PO4). The name lithiophilite is derived from the Greek philos (φιλός) "friend", as lithiophilite is usually found with lithium.

<span class="mw-page-title-main">Greisen</span> Highly altered granitic rock or pegmatite

Greisen is a highly altered granitic rock or pegmatite, usually composed predominantly of quartz and micas. Greisen is formed by self-generated alteration of a granite and is a class of moderate- to high-temperature magmatic-hydrothermal alteration related to the late-stage release of volatiles dissolved in a magma during the solidification of that magma.

<span class="mw-page-title-main">Pollucite</span> Zeolite mineral

Pollucite is a zeolite mineral with the formula (Cs,Na)2Al2Si4O12·2H2O with iron, calcium, rubidium and potassium as common substituting elements. It is important as a significant ore of caesium and sometimes rubidium. It forms a solid solution series with analcime. It crystallizes in the isometric-hexoctahedral crystal system as colorless, white, gray, or rarely pink and blue masses. Well-formed crystals are rare. It has a Mohs hardness of 6.5 and a specific gravity of 2.9, with a brittle fracture and no cleavage.

Tantite is a rare tantalum oxide mineral with formula: Ta2O5. Tantite forms transparent microscopic colorless triclinic - pedial crystals with an adamantine luster. It has a Mohs hardness of 7 and a high specific gravity of 8.45. Chemical analyses show minor inclusion (1.3%) of niobium oxide.

<span class="mw-page-title-main">Microlite</span>

Microlite was once known as a pale-yellow, reddish-brown, or black isometric mineral composed of sodium calcium tantalum oxide with a small amount of fluorine. Its chemical formula is (Na,Ca)2Ta2O6(O,OH,F). Today it is a name of a group of oxide minerals of a similar stoichiometry having tantalum prevailing over titanium and niobium. The microlite group belongs to a large pyrochlore supergroup that occurs in pegmatites and constitutes an ore of tantalum. It has a Mohs hardness of 5.5 and a variable specific gravity of 4.2 to 6.4. It occurs as disseminated microscopic subtranslucent to opaque octahedral crystals with a refractive index of 2.0 to 2.2. Microlite is also called djalmaite, but both names are now obsolete.

<span class="mw-page-title-main">Eucryptite</span>

Eucryptite is a lithium bearing aluminium silicate mineral with formula LiAlSiO4. It crystallizes in the trigonal – rhombohedral crystal system. It typically occurs as granular to massive in form and may pseudomorphically replace spodumene. It has a brittle to conchoidal fracture and indistinct cleavage. It is transparent to translucent and varies from colorless to white to brown. It has a Mohs hardness of 6.5 and a specific gravity of 2.67. Optically it is uniaxial positive with refractive index values of nω = 1.570 – 1.573 and nε = 1.583 – 1.587.

<span class="mw-page-title-main">Tanco Mine</span> Canadian underground mine

The Tanco Mine or Bernic Lake mine is an underground caesium and tantalum mine, owned and since 2019 owned and operated by Sinomine Resource Group on the north west shore of Bernic Lake, Manitoba, Canada. The mine has the largest known deposit of pollucite and is also the world's largest producer of caesium.

<span class="mw-page-title-main">Wodginite</span>

Wodginite is a manganese, tin, tantalum oxide mineral with the chemical formula Mn2+(Sn,Ta)Ta2O8. It may also include significant amounts of niobium.

<span class="mw-page-title-main">Simpsonite</span>

Simpsonite has a general formula of Al4(Ta,Nb)3O13(OH). It occurs as euhedral to subhedral tabular to short and prismatic crystals, commonly in subparallel groups. Under the petrographic microscope it has a very high relief.

<span class="mw-page-title-main">Ixiolite</span>

Ixiolite is an accessory oxide mineral found in granitic pegmatites. It is an oxide with the general chemical formula (Ta,Nb,Sn,Mn,Fe)4O8 or (Ta,Mn,Nb)O2.

<span class="mw-page-title-main">Vadito Group</span> Group of geologic formations in New Mexico, US

The Vadito Group is a group of geologic formations that crops out in most of the Precambrian-cored uplifts of northern New Mexico. Detrital zircon geochronology and radiometric dating give a consistent age of 1700 Mya for the group, corresponding to the Statherian period.

<span class="mw-page-title-main">Burned Mountain Formation</span>

The Burned Mountain Formation is a geologic formation that crops out in the Tusas Mountains of northern New Mexico. It has a U-Pb radiometric age of 1700 Mya, corresponding to the Statherian period.

<span class="mw-page-title-main">Tin Mountain pegmatite</span>

The Tin Mountain pegmatite is an igneous intrusion located in the southern Black Hills, South Dakota. It is a part of the Harney Peak Granite dome that formed in the Late Paleoproterozoic around 1.7 billion years ago. The Harney Peak Granite system includes thousands of pegmatites, one of which is the Tin Mountain. The Tin Mountain pegmatite is rich in lithium, but was first mined in search of tin, which gave the mountain its name.

The Finnis Lithium Project is a lithium mine situated near Darwin in the Northern Territory, Australia. It is being developed by Core Lithium.

References

  1. 1 2 3 4 Brookins, Douglas G.; Chakoumakos, Bryan C.; Cook, Clarence W.; Ewing, Rodney C.; Landis, Gary P.; Register, Marcia E. (1979). "THE HARDING PEGMATITE: SUMMARY OF RECENT RESEARCH" (PDF). New Mexico Geological Society Field Conference Series. 30: 127. Retrieved April 16, 2020.
  2. 1 2 3 4 Jahns, Richard H.; Ewing, Rodney C. (1976). "The Harding Mine Taos County New Mexico" (PDF). New Mexico Geological Society Field Conference Series. 27: 263.
  3. Jones, James V. III; Daniel, Christopher G.; Frei, Dirk; Thrane, Kristine (2011). "Revised regional correlations and tectonic implications of Paleoproterozoic and Mesoproterozoic metasedimentary rocks in northern New Mexico, USA: New findings from detrital zircon studies of the Hondo Group, Vadito Group, and Marqueñas Formation". Geosphere. 7 (4): 974–991. doi: 10.1130/GES00614.1 . Retrieved April 15, 2020.