Hierarchy (mathematics)

Last updated

In mathematics, a hierarchy is a set-theoretical object, consisting of a preorder defined on a set. This is often referred to as an ordered set, though that is an ambiguous term that many authors reserve for partially ordered sets or totally ordered sets. The term pre-ordered set is unambiguous, and is always synonymous with a mathematical hierarchy. The term hierarchy is used to stress a hierarchical relation among the elements.

Contents

Sometimes, a set comes equipped with a natural hierarchical structure. For example, the set of natural numbers N is equipped with a natural pre-order structure, where whenever we can find some other number so that . That is, is bigger than only because we can get to from using. This idea can be applied to any commutative monoid. On the other hand, the set of integers Z requires a more sophisticated argument for its hierarchical structure, since we can always solve the equation by writing .[ citation needed ]

A mathematical hierarchy (a pre-ordered set) should not be confused with the more general concept of a hierarchy in the social realm, particularly when one is constructing computational models that are used to describe real-world social, economic or political systems. These hierarchies, or complex networks, are much too rich to be described in the category Set of sets. [1] This is not just a pedantic claim; there are also mathematical hierarchies, in the general sense, that are not describable using set theory.[ citation needed ]

Other natural hierarchies arise in computer science, where the word refers to partially ordered sets whose elements are classes of objects of increasing complexity. In that case, the preorder defining the hierarchy is the class-containment relation. Containment hierarchies are thus special cases of hierarchies.

Individual elements of a hierarchy are often called levels and a hierarchy is said to be infinite if it has infinitely many distinct levels but said to collapse if it has only finitely many distinct levels.

Example

In theoretical computer science, the time hierarchy is a classification of decision problems according to the amount of time required to solve them.

See also

Related Research Articles

In mathematics, a directed set is a nonempty set together with a reflexive and transitive binary relation , with the additional property that every pair of elements has an upper bound. In other words, for any and in there must exist in with and A directed set's preorder is called a direction.

A hierarchy is an arrangement of items that are represented as being "above", "below", or "at the same level as" one another. Hierarchy is an important concept in a wide variety of fields, such as architecture, philosophy, design, mathematics, computer science, organizational theory, systems theory, systematic biology, and the social sciences.

<span class="mw-page-title-main">Partially ordered set</span> Mathematical set with an ordering

In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word partial is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is reflexive, transitive and antisymmetric. A partially ordered set is a set on which a partial order is defined.

<span class="mw-page-title-main">Preorder</span> Reflexive and transitive binary relation

In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special cases of a preorder: an antisymmetric preorder is a partial order, and a symmetric preorder is an equivalence relation.

<span class="mw-page-title-main">Set theory</span> Branch of mathematics that studies sets

Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole.

In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation on some set , which satisfies the following for all and in :

  1. (reflexive).
  2. If and then (transitive).
  3. If and then (antisymmetric).
  4. or .

In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: 1 − 2 is not a natural number, although both 1 and 2 are.

<span class="mw-page-title-main">Maximal and minimal elements</span> Element that is not ≤ (or ≥) any other element

In mathematics, especially in order theory, a maximal element of a subset S of some preordered set is an element of S that is not smaller than any other element in S. A minimal element of a subset S of some preordered set is defined dually as an element of S that is not greater than any other element in S.

In mathematics, a binary relation R is called well-founded on a class X if every non-empty subset SX has a minimal element with respect to R, that is, an element mS not related by sRm for any sS. In other words, a relation is well founded if

Domain theory is a branch of mathematics that studies special kinds of partially ordered sets (posets) commonly called domains. Consequently, domain theory can be considered as a branch of order theory. The field has major applications in computer science, where it is used to specify denotational semantics, especially for functional programming languages. Domain theory formalizes the intuitive ideas of approximation and convergence in a very general way and is closely related to topology.

Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary.

This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:

In set theory, a tree is a partially ordered set (T, <) such that for each tT, the set {sT : s < t} is well-ordered by the relation <. Frequently trees are assumed to have only one root (i.e. minimal element), as the typical questions investigated in this field are easily reduced to questions about single-rooted trees.

In mathematics, specifically order theory, a well-quasi-ordering or wqo is a quasi-ordering such that any infinite sequence of elements from contains an increasing pair with

In mathematics, a join-semilattice is a partially ordered set that has a join for any nonempty finite subset. Dually, a meet-semilattice is a partially ordered set which has a meet for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.

<span class="mw-page-title-main">Weak ordering</span> Mathematical ranking of a set

In mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets and are in turn generalized by (strictly) partially ordered sets and preorders.

Descriptive complexity is a branch of computational complexity theory and of finite model theory that characterizes complexity classes by the type of logic needed to express the languages in them. For example, PH, the union of all complexity classes in the polynomial hierarchy, is precisely the class of languages expressible by statements of second-order logic. This connection between complexity and the logic of finite structures allows results to be transferred easily from one area to the other, facilitating new proof methods and providing additional evidence that the main complexity classes are somehow "natural" and not tied to the specific abstract machines used to define them.

Finite model theory is a subarea of model theory. Model theory is the branch of logic which deals with the relation between a formal language (syntax) and its interpretations (semantics). Finite model theory is a restriction of model theory to interpretations on finite structures, which have a finite universe.

In descriptive set theory, a tree on a set is a collection of finite sequences of elements of such that every prefix of a sequence in the collection also belongs to the collection.

In order theory, a branch of mathematics, a linear extension of a partial order is a total order that is compatible with the partial order. As a classic example, the lexicographic order of totally ordered sets is a linear extension of their product order.

References

  1. We may need a bigger topos.