Hilbert's Nullstellensatz

Last updated

In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893 (following his seminal 1890 paper in which he proved Hilbert's basis theorem).

Contents

Formulation

Let be a field (such as the rational numbers) and be an algebraically closed field extension of (such as the complex numbers). Consider the polynomial ring and let be an ideal in this ring. The algebraic set defined by this ideal consists of all -tuples in such that for all in . Hilbert's Nullstellensatz states that if p is some polynomial in that vanishes on the algebraic set , i.e. for all in , then there exists a natural number such that is in . [1]

An immediate corollary is the weak Nullstellensatz: The ideal contains 1 if and only if the polynomials in I do not have any common zeros in Kn. Specializing to the case , one immediately recovers a restatement of the fundamental theorem of algebra: a polynomial P in has a root in if and only if deg P ≠ 0. For this reason, the (weak) Nullstellensatz has been referred to as a generalization of the fundamental theorem of algebra for multivariable polynomials. [2] The weak Nullstellensatz may also be formulated as follows: if I is a proper ideal in then V(I) cannot be empty, i.e. there exists a common zero for all the polynomials in the ideal in every algebraically closed extension of k. This is the reason for the name of the theorem, the full version of which can be proved easily from the 'weak' form using the Rabinowitsch trick. The assumption of considering common zeros in an algebraically closed field is essential here; for example, the elements of the proper ideal (X2 + 1) in do not have a common zero in

With the notation common in algebraic geometry, the Nullstellensatz can also be formulated as

for every ideal J. Here, denotes the radical of J and I(U) is the ideal of all polynomials that vanish on the set U.

In this way, taking we obtain an order-reversing bijective correspondence between the algebraic sets in Kn and the radical ideals of In fact, more generally, one has a Galois connection between subsets of the space and subsets of the algebra, where "Zariski closure" and "radical of the ideal generated" are the closure operators.

As a particular example, consider a point . Then . More generally,

Conversely, every maximal ideal of the polynomial ring (note that is algebraically closed) is of the form for some .

As another example, an algebraic subset W in Kn is irreducible (in the Zariski topology) if and only if is a prime ideal.

Proofs

There are many known proofs of the theorem. Some are non-constructive, such as the first one. Others are constructive, as based on algorithms for expressing 1 or pr as a linear combination of the generators of the ideal.

Using Zariski's lemma

Zariski's lemma asserts that if a field is finitely generated as an associative algebra over a field k, then it is a finite field extension of k (that is, it is also finitely generated as a vector space).

Here is a sketch of a proof using this lemma. [3]

Let (k algebraically closed field), I an ideal of A, and V the common zeros of I in . Clearly, . Let . Then for some prime ideal in A. Let and a maximal ideal in . By Zariski's lemma, is a finite extension of k; thus, is k since k is algebraically closed. Let be the images of under the natural map passing through . It follows that and .

Using resultants

The following constructive proof of the weak form is one of the oldest proofs (the strong form results from the Rabinowitsch trick, which is also constructive).

The resultant of two polynomials depending on a variable x and other variables is a polynomial in the other variables that is in the ideal generated by the two polynomials, and has the following properties: if one of the polynomials is monic in x, every zero (in the other variables) of the resultant may be extended into a common zero of the two polynomials.

The proof is as follows.

If the ideal is principal, generated by a non-constant polynomial p that depends on x, one chooses arbitrary values for the other variables. The fundamental theorem of algebra asserts that this choice can be extended to a zero of p.

In the case of several polynomials a linear change of variables allows to suppose that is monic in the first variable x. Then, one introduces new variables and one considers the resultant

As R is in the ideal generated by the same is true for the coefficients in R of the monomials in So, if 1 is in the ideal generated by these coefficients, it is also in the ideal generated by On the other hand, if these coefficients have a common zero, this zero can be extended to a common zero of by the above property of the resultant.

This proves the weak Nullstellensatz by induction on the number of variables.

Using Gröbner bases

A Gröbner basis is an algorithmic concept that was introduced in 1973 by Bruno Buchberger. It is presently fundamental in computational geometry. A Gröbner basis is a special generating set of an ideal from which most properties of the ideal can easily be extracted. Those that are related to the Nullstellensatz are the following:

Generalizations

The Nullstellensatz is subsumed by a systematic development of the theory of Jacobson rings, which are those rings in which every radical ideal is an intersection of maximal ideals. Given Zariski's lemma, proving the Nullstellensatz amounts to showing that if k is a field, then every finitely generated k-algebra R (necessarily of the form ) is Jacobson. More generally, one has the following theorem:

Let be a Jacobson ring. If is a finitely generated R-algebra, then is a Jacobson ring. Furthermore, if is a maximal ideal, then is a maximal ideal of , and is a finite extension of . [4]

Other generalizations proceed from viewing the Nullstellensatz in scheme-theoretic terms as saying that for any field k and nonzero finitely generated k-algebra R, the morphism admits a section étale-locally (equivalently, after base change along for some finite field extension ). In this vein, one has the following theorem:

Any faithfully flat morphism of schemes locally of finite presentation admits a quasi-section, in the sense that there exists a faithfully flat and locally quasi-finite morphism locally of finite presentation such that the base change of along admits a section. [5] Moreover, if is quasi-compact (resp. quasi-compact and quasi-separated), then one may take to be affine (resp. affine and quasi-finite), and if is smooth surjective, then one may take to be étale. [6]

Serge Lang gave an extension of the Nullstellensatz to the case of infinitely many generators:

Let be an infinite cardinal and let be an algebraically closed field whose transcendence degree over its prime subfield is strictly greater than . Then for any set of cardinality , the polynomial ring satisfies the Nullstellensatz, i.e., for any ideal we have that . [7]

Effective Nullstellensatz

In all of its variants, Hilbert's Nullstellensatz asserts that some polynomial g belongs or not to an ideal generated, say, by f1, ..., fk; we have g = fr in the strong version, g = 1 in the weak form. This means the existence or the non-existence of polynomials g1, ..., gk such that g = f1g1 + ... + fkgk. The usual proofs of the Nullstellensatz are not constructive, non-effective, in the sense that they do not give any way to compute the gi.

It is thus a rather natural question to ask if there is an effective way to compute the gi (and the exponent r in the strong form) or to prove that they do not exist. To solve this problem, it suffices to provide an upper bound on the total degree of the gi: such a bound reduces the problem to a finite system of linear equations that may be solved by usual linear algebra techniques. Any such upper bound is called an effective Nullstellensatz.

A related problem is the ideal membership problem, which consists in testing if a polynomial belongs to an ideal. For this problem also, a solution is provided by an upper bound on the degree of the gi. A general solution of the ideal membership problem provides an effective Nullstellensatz, at least for the weak form.

In 1925, Grete Hermann gave an upper bound for ideal membership problem that is doubly exponential in the number of variables. In 1982 Mayr and Meyer gave an example where the gi have a degree that is at least double exponential, showing that every general upper bound for the ideal membership problem is doubly exponential in the number of variables.

Since most mathematicians at the time assumed the effective Nullstellensatz was at least as hard as ideal membership, few mathematicians sought a bound better than double-exponential. In 1987, however, W. Dale Brownawell gave an upper bound for the effective Nullstellensatz that is simply exponential in the number of variables. [8] Brownawell's proof relied on analytic techniques valid only in characteristic 0, but, one year later, János Kollár gave a purely algebraic proof, valid in any characteristic, of a slightly better bound.

In the case of the weak Nullstellensatz, Kollár's bound is the following: [9]

Let f1, ..., fs be polynomials in n ≥ 2 variables, of total degree d1 ≥ ... ≥ ds. If there exist polynomials gi such that f1g1 + ... + fsgs = 1, then they can be chosen such that
This bound is optimal if all the degrees are greater than 2.

If d is the maximum of the degrees of the fi, this bound may be simplified to

An improvement due to M. Sombra is [10]

His bound improves Kollár's as soon as at least two of the degrees that are involved are lower than 3.

Projective Nullstellensatz

We can formulate a certain correspondence between homogeneous ideals of polynomials and algebraic subsets of a projective space, called the projective Nullstellensatz, that is analogous to the affine one. To do that, we introduce some notations. Let The homogeneous ideal,

is called the maximal homogeneous ideal (see also irrelevant ideal). As in the affine case, we let: for a subset and a homogeneous ideal I of R,

By we mean: for every homogeneous coordinates of a point of S we have . This implies that the homogeneous components of f are also zero on S and thus that is a homogeneous ideal. Equivalently, is the homogeneous ideal generated by homogeneous polynomials f that vanish on S. Now, for any homogeneous ideal , by the usual Nullstellensatz, we have:

and so, like in the affine case, we have: [11]

There exists an order-reversing one-to-one correspondence between proper homogeneous radical ideals of R and subsets of of the form The correspondence is given by and

Analytic Nullstellensatz (Rückert’s Nullstellensatz)

The Nullstellensatz also holds for the germs of holomorphic functions at a point of complex n-space Precisely, for each open subset let denote the ring of holomorphic functions on U; then is a sheaf on The stalk at, say, the origin can be shown to be a Noetherian local ring that is a unique factorization domain.

If is a germ represented by a holomorphic function , then let be the equivalence class of the set

where two subsets are considered equivalent if for some neighborhood U of 0. Note is independent of a choice of the representative For each ideal let denote for some generators of I. It is well-defined; i.e., is independent of a choice of the generators.

For each subset , let

It is easy to see that is an ideal of and that if in the sense discussed above.

The analytic Nullstellensatz then states: [12] for each ideal ,

where the left-hand side is the radical of I.

See also

Notes

  1. Zariski–Samuel , Ch. VII, Theorem 14.
  2. Cox, David A.; Little, John; O’Shea, Donal (2015). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Cham: Springer International Publishing. doi:10.1007/978-3-319-16721-3. ISBN   978-3-319-16720-6.
  3. Atiyah–Macdonald , Ch. 7.
  4. Emerton, Matthew. "Jacobson rings" (PDF). Archived (PDF) from the original on 2022-07-25.
  5. EGA §IV.17.16.2.
  6. EGA §IV.17.16.3(ii).
  7. Lang, Serge (1952). "Hilbert's Nullstellensatz in Infinite-Dimensional Space". Proc. Am. Math. Soc. 3 (3): 407–410. doi:10.2307/2031893. JSTOR   2031893.
  8. Brownawell, W. Dale (1987), "Bounds for the degrees in the Nullstellensatz", Ann. of Math. , 126 (3): 577–591, doi:10.2307/1971361, JSTOR   1971361, MR   0916719
  9. Kollár, János (1988), "Sharp Effective Nullstellensatz" (PDF), Journal of the American Mathematical Society , 1 (4): 963–975, doi:10.2307/1990996, JSTOR   1990996, MR   0944576, archived from the original (PDF) on 2014-03-03, retrieved 2012-10-14
  10. Sombra, Martín (1999), "A Sparse Effective Nullstellensatz", Advances in Applied Mathematics , 22 (2): 271–295, arXiv: alg-geom/9710003 , doi:10.1006/aama.1998.0633, MR   1659402, S2CID   119726673
  11. This formulation comes from Milne, Algebraic geometry and differs from Hartshorne 1977 , Ch. I, Exercise 2.4
  12. Huybrechts , Proposition 1.1.29.

Related Research Articles

In mathematics Hilbert's basis theorem asserts that every ideal of a polynomial ring over a field has a finite generating set.

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

<span class="mw-page-title-main">Lie algebra</span> Algebraic structure used in analysis

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .

In commutative algebra, the prime spectrum of a commutative ring is the set of all prime ideals of , and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

In algebra, ring theory is the study of rings, algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings; their representations, or, in different language, modules; special classes of rings ; related structures like rngs; as well as an array of properties that prove to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

In ring theory, a branch of mathematics, the radical of an ideal of a commutative ring is another ideal defined by the property that an element is in the radical if and only if some power of is in . Taking the radical of an ideal is called radicalization. A radical ideal is an ideal that is equal to its radical. The radical of a primary ideal is a prime ideal.

In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module R, so that it consists of fractions such that the denominator s belongs to a given subset S of R. If S is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field of rational numbers from the ring of integers.

<span class="mw-page-title-main">Affine variety</span> Algebraic variety defined within an affine space

In algebraic geometry, an affine algebraic set is the set of the common zeros over an algebraically closed field k of some family of polynomials in the polynomial ring An affine variety or affine algebraic variety, is an affine algebraic set such that the ideal generated by the defining polynomials is prime.

In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In abstract algebra, the Weyl algebras are abstracted from the ring of differential operators with polynomial coefficients. They are named after Hermann Weyl, who introduced them to study the Heisenberg uncertainty principle in quantum mechanics.

In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion-free modules. Formally, a module M over a ring R is flat if taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.

In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether.

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.

In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring.

In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In algebraic geometry, the main theorem of elimination theory states that every projective scheme is proper. A version of this theorem predates the existence of scheme theory. It can be stated, proved, and applied in the following more classical setting. Let k be a field, denote by the n-dimensional projective space over k. The main theorem of elimination theory is the statement that for any n and any algebraic variety V defined over k, the projection map sends Zariski-closed subsets to Zariski-closed subsets.

References