Hippuristanol

Last updated
Hippuristanol
Hippuristanol.png
Names
IUPAC name
(24S)-24-Methyl-22β,25-epoxy-5α,22α-furostan-3α,11β,20β-triol
Systematic IUPAC name
(2R,2′R,4′S,4aS,4bS,5S,6aS,6bR,7R,9aS,10aS,10bS,12aS)-4′,4a,5′,5′,6a,7-Hexamethyloctadecahydrospiro[naphtho[2′,1′:4,5]indeno[2,1-b]furan-8,2′-oxolane]-2,5,7-triol
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
  • InChI=1S/C28H46O5/c1-15-13-28(33-24(15,2)3)27(6,31)23-21(32-28)12-19-18-8-7-16-11-17(29)9-10-25(16,4)22(18)20(30)14-26(19,23)5/h15-23,29-31H,7-14H2,1-6H3/t15-,16-,17+,18-,19-,20-,21-,22+,23-,25-,26-,27+,28+/m0/s1 Yes check.svgY
    Key: HPHXKNOXVBFETI-SHCCRYCOSA-N Yes check.svgY
  • InChI=1S/C28H46O5/c1-15-13-28(33-24(15,2)3)27(6,31)23-21(32-28)12-19-18-8-7-16-11-17(29)9-10-25(16,4)22(18)20(30)14-26(19,23)5/h15-23,29-31H,7-14H2,1-6H3/t15-,16-,17+,18-,19-,20-,21-,22+,23-,25-,26-,27+,28+/m0/s1
  • Key: HPHXKNOXVBFETI-SHCCRYCOSA-N
  • [H][C@@]23CC[C@@]1([H])C[C@H](O)CC[C@@](C)1[C@]([H])2[C@@H](O)C[C@@]4(C)[C@@](C[C@@]5([H])[C@@]([H])4[C@](O)(C)[C@]6(C[C@H](C)C(C)(C)O6)O5)3[H]
  • OC(C(=O)NNCNC(=O)c1ccccc1)(c2ccccc2)c3ccccc3
Properties
C28H46O5
Molar mass 462.66 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Hippuristanol is a small molecule found in the coral Isis hippuris [1] which was discovered by Jerry Pelletier and others of McGill University in Montreal, Quebec, Canada. [2] It appears to have anti-viral activity and may hold promise as a cancer therapy. [3] Binds to and inhibits the eukaryotic translation initiation factor protein eIF4A. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Ribavirin</span> Antiviral medication

Ribavirin, also known as tribavirin, is an antiviral medication used to treat RSV infection, hepatitis C and some viral hemorrhagic fevers. For hepatitis C, it is used in combination with other medications such as simeprevir, sofosbuvir, peginterferon alfa-2b or peginterferon alfa-2a. Among the viral hemorrhagic fevers it is used for Lassa fever, Crimean–Congo hemorrhagic fever, and Hantavirus infection but should not be used for Ebola or Marburg infections. Ribavirin is taken by mouth or inhaled.

Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping.

Initiation factors are proteins that bind to the small subunit of the ribosome during the initiation of translation, a part of protein biosynthesis.

Eukaryotic initiation factors (eIFs) are proteins or protein complexes involved in the initiation phase of eukaryotic translation. These proteins help stabilize the formation of ribosomal preinitiation complexes around the start codon and are an important input for post-transcription gene regulation. Several initiation factors form a complex with the small 40S ribosomal subunit and Met-tRNAiMet called the 43S preinitiation complex. Additional factors of the eIF4F complex recruit the 43S PIC to the five-prime cap structure of the mRNA, from which the 43S particle scans 5'-->3' along the mRNA to reach an AUG start codon. Recognition of the start codon by the Met-tRNAiMet promotes gated phosphate and eIF1 release to form the 48S preinitiation complex, followed by large 60S ribosomal subunit recruitment to form the 80S ribosome. There exist many more eukaryotic initiation factors than prokaryotic initiation factors, reflecting the greater biological complexity of eukaryotic translation. There are at least twelve eukaryotic initiation factors, composed of many more polypeptides, and these are described below.

<span class="mw-page-title-main">EIF4E</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 4E, also known as eIF4E, is a protein that in humans is encoded by the EIF4E gene.

<span class="mw-page-title-main">Eukaryotic translation initiation factor 4 gamma 1</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 4 gamma 1 is a protein that in humans is encoded by the EIF4G1 gene.

<span class="mw-page-title-main">EIF2S1</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 2 subunit 1 (eIF2α) is a protein that in humans is encoded by the EIF2S1 gene.

<span class="mw-page-title-main">EIF3A</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 3 subunit A (eIF3a) is a protein that in humans is encoded by the EIF3A gene. It is one of the subunits of Eukaryotic initiation factor 3 (eIF3) a multiprotein complex playing major roles in translation initiation in eukaryotes.

<span class="mw-page-title-main">EIF2S2</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 2 subunit 2 (eIF2β) is a protein that in humans is encoded by the EIF2S2 gene.

<span class="mw-page-title-main">EIF2S3</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 2 subunit 3 (eIF2γ) is a protein that in humans is encoded by the EIF2S3 gene.

<span class="mw-page-title-main">EIF4A1</span> Protein coding gene in Humans

Eukaryotic initiation factor 4A-I is a 46 kDa cytosolic protein that, in humans, is encoded by the EIF4A1 gene, which is located on chromosome 17. It is the most prevalent member of the eIF4A family of ATP-dependant RNA helicases, and plays a critical role in the initiation of cap-dependent eukaryotic protein translation as a component of the eIF4F translation initiation complex. eIF4A1 unwinds the secondary structure of RNA within the 5'-UTR of mRNA, a critical step necessary for the recruitment of the 43S preinitiation complex, and thus the translation of protein in eukaryotes. It was first characterized in 1982 by Grifo, et al., who purified it from rabbit reticulocyte lysate.

<span class="mw-page-title-main">EIF3H</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 3 subunit H (eIF3h) is a protein that in humans is encoded by the EIF3H gene.

<span class="mw-page-title-main">EIF2A</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 2A (eIF2A) is a protein that in humans is encoded by the EIF2A gene. The eIF2A protein is not to be confused with eIF2α, a subunit of the heterotrimeric eIF2 complex. Instead, eIF2A functions by a separate mechanism in eukaryotic translation.

<span class="mw-page-title-main">EIF3D</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 3 subunit D (eIF3d) is a protein that in humans is encoded by the EIF3D gene.

<span class="mw-page-title-main">Protein synthesis inhibitor</span> Inhibitors of translation

A protein synthesis inhibitor is a compound that stops or slows the growth or proliferation of cells by disrupting the processes that lead directly to the generation of new proteins.

Eukaryotic translation initiation factor 4 G (eIF4G) is a protein involved in eukaryotic translation initiation and is a component of the eIF4F cap-binding complex. Orthologs of eIF4G have been studied in multiple species, including humans, yeast, and wheat. However, eIF4G is exclusively found in domain Eukarya, and not in domains Bacteria or Archaea, which do not have capped mRNA. As such, eIF4G structure and function may vary between species, although the human EIF4G1 has been the focus of extensive studies.

Eukaryotic Initiation Factor 2 (eIF2) is an eukaryotic initiation factor. It is required for most forms of eukaryotic translation initiation. eIF2 mediates the binding of tRNAiMet to the ribosome in a GTP-dependent manner. eIF2 is a heterotrimer consisting of an alpha, a beta, and a gamma subunit.

The eukaryotic initiation factor-4A (eIF4A) family consists of 3 closely related proteins EIF4A1, EIF4A2, and EIF4A3. These factors are required for the binding of mRNA to 40S ribosomal subunits. In addition these proteins are helicases that function to unwind double-stranded RNA.

<span class="mw-page-title-main">Eukaryotic ribosome</span> Large and complex molecular machine

Ribosomes are a large and complex molecular machine that catalyzes the synthesis of proteins, referred to as translation. The ribosome selects aminoacylated transfer RNAs (tRNAs) based on the sequence of a protein-encoding messenger RNA (mRNA) and covalently links the amino acids into a polypeptide chain. Ribosomes from all organisms share a highly conserved catalytic center. However, the ribosomes of eukaryotes are much larger than prokaryotic ribosomes and subject to more complex regulation and biogenesis pathways. Eukaryotic ribosomes are also known as 80S ribosomes, referring to their sedimentation coefficients in Svedberg units, because they sediment faster than the prokaryotic (70S) ribosomes. Eukaryotic ribosomes have two unequal subunits, designated small subunit (40S) and large subunit (60S) according to their sedimentation coefficients. Both subunits contain dozens of ribosomal proteins arranged on a scaffold composed of ribosomal RNA (rRNA). The small subunit monitors the complementarity between tRNA anticodon and mRNA, while the large subunit catalyzes peptide bond formation.

<span class="mw-page-title-main">Eukaryotic initiation factor 4F</span> Multiprotein complex used in gene expression

Eukaryotic initiation factor 4F (eIF4F) is a heterotrimeric protein complex that binds the 5' cap of messenger RNAs (mRNAs) to promote eukaryotic translation initiation. The eIF4F complex is composed of three non-identical subunits: the DEAD-box RNA helicase eIF4A, the cap-binding protein eIF4E, and the large "scaffold" protein eIF4G. The mammalian eIF4F complex was first described in 1983, and has been a major area of study into the molecular mechanisms of cap-dependent translation initiation ever since.

References

  1. Bordeleau, Marie-Eve; Mori, Ayaka; Oberer, Monika; Lindqvist, Lisa; Chard, Louisa S; Higa, Tatsuo; Belsham, Graham J; Wagner, Gerhard; Tanaka, Junichi; Pelletier, Jerry (2006). "Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A". Nature Chemical Biology. 2 (4): 213–220. doi:10.1038/nchembio776. PMID   16532013. S2CID   15635690.
  2. Killer Coral Compound, sciencebase 12 March 2006
  3. Compound from Coral Could Combat Cancer Scientific American March 13, 2006
  4. Cencic, Regina; Pelletier, Jerry (2016-01-02). "Hippuristanol - A potent steroid inhibitor of eukaryotic initiation factor 4A". Translation. Informa UK Limited. 4 (1): e1137381. doi:10.1080/21690731.2015.1137381. ISSN   2169-0731. PMC   4909409 . PMID   27335721.