Holistic community

Last updated

A holistic community (also referred to as closed or unitary community) is an ecosystem where species within the community are interdependent, relying on each other to maintain the balance and stability of the system. These communities are described as working like one unit, meaning that every species plays an important part in the overall well-being of the ecosystem in which the community resides; much like the organelles within a cell, or even the cells making up one organism. Holistic communities have diffused boundaries and an independent species range. Co-evolution is likely to be found in communities structured after this model, as a result of the interdependence and high rates of interaction found among the different populations. Species compositions of communities change sharply at environmental edges (known as ecotones).

Contents

Background

According to a widespread narrative, the ideas of a holistic ecological community were introduced by plant ecologist Frederic Clements in 1916, and countered by Henry Gleason in 1917, when he proposed the individualistic/open community concept (in applications to plants). [1] However, this seems to be wrong in at least two essential respects:

While Warming might have been the first to propose an organismic theory of ecological communities, one of the first to elaborate such a theory has been the limnologist, zoologist and ecologist August Thienemann. According to Thienemann, a biocoenosis “is not just an aggregate, a sum of organisms that coexist in the same biotope owing to alike exogenous habitat conditions but a (supra-individual) whole, a togetherness and a for-each-other of organisms” (Thienemann 1939: 275). He even assumes that the members of a biocoenosis feature “specific mutual relations that are vital for their life” (ibid.: 268), whereby this mutual “bond either exists directly from organism to organism or operates indirectly by the medium of vitally created modifications of the physiographic conditions of the biotope” (Thienemann 1941: 105). [3]

Neither organismic nor individualistic communities have been found to exist in nature in entirety, both are theoretical concepts that can be applied to empirical communities. For example, a community's composition can be better explained by holism than individualism, or vice versa. This ecological concept is based on the broader concept of holism, which describes the functionality of any system as having many individual parts, all of which are extremely important to the system's viability.

"A community has been viewed as a super organism with integrity analogous to that of cells in an organism. This is the holistic or unitary view of a community, and one championed by Clements (1916). He regarded the community to be a highly integrated unit that operated very much within itself with little interaction with surrounding communities - a closed community." [4]

"The holistic model considers all living beings as its subjects who are manifestations of the Absolute and part of the whole. It includes all relations that arise between them. The most efficient satisfaction of their interest is the most important designation of the holistic system (holistic community). The holistic community is equally responsible for the human development and for the harmonious evolution of all other subjects of holistic model. The subjects of holistic model are the following:

This characteristic illustrates that the holistic model is universal and exceeds just human relations. It is not just humanistic but also respectful for all life in general. The necessity to identify the subjects in the frame of the whole is the first condition for the proper satisfaction of their interests. Without differentiating them and without knowing well how they function, it is impossible to conduct rational action which aims to fulfil the needs of everyone in the system and to refine their environment." [5]

See also

Related Research Articles

<span class="mw-page-title-main">Ecology</span> Study of organisms and their environment

Ecology is the study of the relationships among living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history. Ecology is a branch of biology, and it is not synonymous with environmentalism.

<span class="mw-page-title-main">Ecosystem</span> Community of living organisms together with the nonliving components of their environment

An ecosystem consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the system through photosynthesis and is incorporated into plant tissue. By feeding on plants and on one another, animals play an important role in the movement of matter and energy through the system. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and microbes.

<span class="mw-page-title-main">Biocoenosis</span> Interacting organisms living together in a habitat

A biocenosis, coined by Karl Möbius in 1877, describes the interacting organisms living together in a habitat (biotope). The use of this term has declined in the 21st сentury.

<span class="mw-page-title-main">Vegetation</span> Assemblage of plant species

Vegetation is an assemblage of plant species and the ground cover they provide. It is a general term, without specific reference to particular taxa, life forms, structure, spatial extent, or any other specific botanical or geographic characteristics. It is broader than the term flora which refers to species composition. Perhaps the closest synonym is plant community, but vegetation can, and often does, refer to a wider range of spatial scales than that term does, including scales as large as the global. Primeval redwood forests, coastal mangrove stands, sphagnum bogs, desert soil crusts, roadside weed patches, wheat fields, cultivated gardens and lawns; all are encompassed by the term vegetation.

<span class="mw-page-title-main">Biological interaction</span> Effect that organisms have on other organisms

In ecology, a biological interaction is the effect that a pair of organisms living together in a community have on each other. They can be either of the same species, or of different species. These effects may be short-term, or long-term, both often strongly influence the adaptation and evolution of the species involved. Biological interactions range from mutualism, beneficial to both partners, to competition, harmful to both partners. Interactions can be direct when physical contact is established or indirect, through intermediaries such as shared resources, territories, ecological services, metabolic waste, toxins or growth inhibitors. This type of relationship can be shown by net effect based on individual effects on both organisms arising out of relationship.

<span class="mw-page-title-main">Landscape ecology</span> Science of relationships between ecological processes in the environment and particular ecosystems

Landscape ecology is the science of studying and improving relationships between ecological processes in the environment and particular ecosystems. This is done within a variety of landscape scales, development spatial patterns, and organizational levels of research and policy. Concisely, landscape ecology can be described as the science of "landscape diversity" as the synergetic result of biodiversity and geodiversity.

This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.

<span class="mw-page-title-main">Climax community</span> Ecological community of organisms

In scientific ecology, climax community or climatic climax community is a historic term for a community of plants, animals, and fungi which, through the process of ecological succession in the development of vegetation in an area over time, have reached a steady state. This equilibrium was thought to occur because the climax community is composed of species best adapted to average conditions in that area. The term is sometimes also applied in soil development. Nevertheless, it has been found that a "steady state" is more apparent than real, particularly across long timescales. Notwithstanding, it remains a useful concept.

<span class="mw-page-title-main">Ecological succession</span> Process of change in the species structure of an ecological community over time

Ecological succession is the process of change in the species that make up an ecological community over time.

Organicism is the philosophical position that states that the universe and its various parts ought to be considered alive and naturally ordered, much like a living organism. Vital to the position is the idea that organicistic elements are not dormant "things" per se but rather dynamic components in a comprehensive system that is, as a whole, everchanging. Organicism is related to but remains distinct from holism insofar as it prefigures holism; while the latter concept is applied more broadly to universal part-whole interconnections such as in anthropology and sociology, the former is traditionally applied only in philosophy and biology. Furthermore, organicism is incongruous with reductionism because of organicism's consideration of "both bottom-up and top-down causation." Regarded as a fundamental tenet in natural philosophy, organicism has remained a vital current in modern thought, alongside both reductionism and mechanism, that has guided scientific inquiry since the early 17th century.

Ecotopes are the smallest ecologically distinct landscape features in a landscape mapping and classification system. As such, they represent relatively homogeneous, spatially explicit landscape functional units that are useful for stratifying landscapes into ecologically distinct features for the measurement and mapping of landscape structure, function and change.

Ecology is a new science and considered as an important branch of biological science, having only become prominent during the second half of the 20th century. Ecological thought is derivative of established currents in philosophy, particularly from ethics and politics.

Frederic Edward Clements was an American plant ecologist and pioneer in the study of plant ecology and vegetation succession.

Phytosociology, also known as phytocoenology or simply plant sociology, is the study of groups of species of plant that are usually found together. Phytosociology aims to empirically describe the vegetative environment of a given territory. A specific community of plants is considered a social unit, the product of definite conditions, present and past, and can exist only when such conditions are met. In phyto-sociology, such a unit is known as a phytocoenosis. A phytocoenosis is more commonly known as a plant community, and consists of the sum of all plants in a given area. It is a subset of a biocoenosis, which consists of all organisms in a given area. More strictly speaking, a phytocoenosis is a set of plants in area that are interacting with each other through competition or other ecological processes. Coenoses are not equivalent to ecosystems, which consist of organisms and the physical environment that they interact with. A phytocoensis has a distribution which can be mapped. Phytosociology has a system for describing and classifying these phytocoenoses in a hierarchy, known as syntaxonomy, and this system has a nomenclature. The science is most advanced in Europe, Africa and Asia.

<span class="mw-page-title-main">Henry A. Gleason</span> American ecologist (1882-1975)

Henry Allan Gleason (1882–1975) was an American ecologist, botanist, and taxonomist. He was known for his endorsement of the individualistic or open community concept of ecological succession, and his opposition to Frederic Clements's concept of the climax state of an ecosystem. His ideas were largely dismissed during his working life, leading him to move into plant taxonomy, but found favour late in the twentieth century.

The following outline is provided as an overview of and topical guide to ecology:

<span class="mw-page-title-main">Community (ecology)</span> Associated populations of species in a given area

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

An ecological network is a representation of the biotic interactions in an ecosystem, in which species (nodes) are connected by pairwise interactions (links). These interactions can be trophic or symbiotic. Ecological networks are used to describe and compare the structures of real ecosystems, while network models are used to investigate the effects of network structure on properties such as ecosystem stability.

<span class="mw-page-title-main">Plant ecology</span> The study of effect of the environment on the abundance and distribution of plants

Plant ecology is a subdiscipline of ecology that studies the distribution and abundance of plants, the effects of environmental factors upon the abundance of plants, and the interactions among plants and between plants and other organisms. Examples of these are the distribution of temperate deciduous forests in North America, the effects of drought or flooding upon plant survival, and competition among desert plants for water, or effects of herds of grazing animals upon the composition of grasslands.

<span class="mw-page-title-main">Evolving digital ecological network</span>

Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs that experience the same major ecological interactions as biological organisms. Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology.

References

  1. Nicolson, Malcolm (April–June 1990). "Henry Allan Gleason and the Individualistic Hypothesis: The Structure of a Botanist's Career". Botanical Review. 56 (2): 91–161. doi:10.1007/BF02858533. S2CID   11654308.
  2. 1 2 Kirchhoff, Thomas (2020). "The myth of Frederic Clements's mutualistic organicism, or: On the necessity to distinguish different concepts of organicism". History and Philosophy of the Life Sciences. 42 (2): 24. doi:10.1007/s40656-020-00317-y. PMID   32519255. S2CID   219563329.
  3. For a more detailed discussion of Thienemann’s theory see Golley, F. B. (1993): A history of the ecosystem concept in ecology more than the sum of the parts. New Haven: Yale University Press: 38–41, 56; Potthast, T. (2001): Gefährliche Ganzheitsbetrachtung oder geeinte Wissenschaft von Leben und Umwelt? Epistemisch-moralische Hybride in der deutschen Ökologie 1925–1955. Verhandlungen zur Geschichte und Theorie der Biologie,7, 91–113; Kirchhoff, T. (2007). Systemauffassungen und biologische Theorien. Zur Herkunft von Individualitätskonzeptionen und ihrer Bedeutung für die Theorie ökologischer Einheiten. [Systems approaches and biological theories. On the origins of concepts of individuality and their significance for the theory of ecological units]. Freising: Technische Universität München, here: 205–214. Also available online: https://mediatum.ub.tum.de/685961; Kirchhoff, T. & Voigt, A. (2010): Rekonstruktion der Geschichte der Synökologie. Konkurrierende Paradigmen, Transformationen, kulturelle Hintergründe. Verhandlungen zur Geschichte und Theorie der Biologie,15, 181–196: here 185; Schwarz, A. & Jax, K. (2011). Early ecology in the German-speaking world through WWII. In A. Schwarz & K. Jax (Eds.), Ecology revisited. Reflecting on concepts, advancing science. Dordrecht: Springer, 231–275.
  4. Osborne, Patrick L. (31 August 2000). Tropical Ecosystems and Ecological Concepts. Cambridge University Press. ISBN   9780521645232.
  5. Milanov, Aleksandar (12 August 2018). Holistic Society (First ed.). Sofia, Bulgaria: New Age citizens Foundation. pp. 24–26. ISBN   9786199083420.