Host cell protein

Last updated

Host cell proteins (HCPs) are process-related protein impurities that are produced by the host organism during biotherapeutic manufacturing and production. During the purification process, a majority of produced HCPs are removed from the final product (>99% of impurities removed). However, residual HCPs still remain in the final distributed pharmaceutical drug. Examples of HCPs that may remain in the desired pharmaceutical product include: monoclonal antibodies (mAbs), antibody-drug-conjugates (ADCs), therapeutic proteins, vaccines, and other protein-based biopharmaceuticals. [1] [2] [3]

Contents

HCPs may cause immunogenicity in individuals or reduce the potency, stability or overall effectiveness of a drug. National regulatory organisations, such as the FDA and EMA provide guidelines on acceptable levels of HCPs that may remain in pharmaceutical products before they are made available to the public. Currently, the acceptable level of HCPs in pharmaceutical drugs range from 1-100ppm (1–100 ng/mg product). However, the accepted level of HCPs in a final product is evaluated on a case-by-case basis, and depends on multiple factors including: dose, frequency of drug administration, type of drug and severity of disease.

The acceptable range of HCPs in a final pharmaceutical product is large due to limitations with the detection and analytical methods that currently exist. [4] Analysis of HCPs is complex as the HCP mixture consists of a large variety of protein species, all of which are unique to the specific host organisms, and unrelated to the intended and desired recombinant protein. [5] Analysing these large varieties of protein species at very minute concentrations is difficult and requires extremely sensitive equipment which has not been fully developed yet. The reason that HCP levels need to be monitored is due to the uncertain effects they have on the body. At trace amounts, the effects of HCPs on patients are unknown and specific HCPs may affect protein stability and drug effectiveness, or cause immunogenicity in patients. [6] [7] If the stability of the drug is affected, durability of the active substance in the pharmaceutical product could decrease. The effects that the drug is intended to have on patients could also possibly be increased or decreased, leading to health complications that may arise. The degree of immunogenicity on a long-term basis is difficult, and almost impossible, to determine and consequences can include severe threats to the patient’s health. [5]

Safety risk

HCPs in biopharmaceutical products pose a potential safety risk to humans by introducing foreign proteins and biomolecules to the human immune system. Since common host cells used to produce biopharmaceutical drugs are E. coli , [8] yeast, [9] mouse myeloma cell line (NS0) [10] and Chinese hamster ovary (CHO), [11] the resultant HCPs are genetically different to what the human body [12] recognizes. As a consequence of this, the presence of HCPs in humans can activate an immune response, which can lead to possibly severe health concerns.

There is a correlation between the amount of foreign antigens (HPCs) in our body and the level of immune response our body produces. The more HCPs present in a drug, the higher the immune response that will be activated. Several studies have linked a reduction in HCPs to a decline in specific inflammatory cytokines. [5] Other HCPs may be very similar to a human protein and may induce an immune response with cross reactivity against the human protein or the drug substance protein. The exact consequences of HCPs for an individual patient is uncertain and difficult to determine with the current analytical methods used in biopharmaceutical production and analysis. [5]

Analysis

HCPs are identified during the manufacturing of biopharmaceuticals as part of the quality control process. [5]

During the production process several factors, including the genes of the host cell, the way of product expression and the purification steps, influence the final HCP composition and abundance. [5] Several studies report that HCPs are often co-purified along with the product itself by interacting with the recombinant protein. [6]

Enzyme linked immunosorbent assay (ELISA) is the predominant method for HCP analysis in pharmaceutical products due to its high sensitivity to proteins, which allows it to detect the low levels of HCPs in produced drugs. [4] Even though the developmental process requires an extended period of work and several tests with animal models, analysis of HCP content in the final product can be rapidly performed and interpreted. [1] Whilst ELISA possesses the sensitivity to undergo HCP analysis, several limitations are associated with the procedure. The HCP quantification relies mainly on the quantity and affinity of anti-HCP antibodies for detection of the HCP antigens. Anti-HCP antibody pools cannot cover the entire HCP population and weakly immunogenic proteins are impossible to detect, since equivalent antibodies are not generated in the process. [4]

Methods such as the combination of mass spectrometry (MS) and liquid chromatography (LC-MS) have recently been developed to allow for more efficient and effective HCP analysis and purification. These methods are able to:

Recently, the MS method has been further improved through the method SWATH LC-MS. SWATH is a data independent acquisition (DIA) form of mass spectrometry, where the mass range is partitioned in small mass windows, which is then analysed with tandem MS (MS/MS). The key advantages are the reproducibility for both individual HCP identification and absolute quantification by applying internal protein standards. [13]

Despite the solid improvements of this method of protein analysis, there are also limitations, the main of which is to take into account the properties of the sample matter, thus: sampling conditions, limited technical variability, and the number of missing values in the sample - lead to infelicity that can be challenged in statistical analysis by factoring in batch effects, sampling effects, and the increase in missing identifications.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Antigen</span> Molecule triggering an immune response (antibody production) in the host

In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response.

<span class="mw-page-title-main">Proteomics</span> Large-scale study of proteins

Proteomics is the large-scale study of proteins. Proteins are vital parts of living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. In addition, other kinds of proteins include antibodies that protect an organism from infection, and hormones that send important signals throughout the body.

Glycomics is the comprehensive study of glycomes, including genetic, physiologic, pathologic, and other aspects. Glycomics "is the systematic study of all glycan structures of a given cell type or organism" and is a subset of glycobiology. The term glycomics is derived from the chemical prefix for sweetness or a sugar, "glyco-", and was formed to follow the omics naming convention established by genomics and proteomics.

<span class="mw-page-title-main">Glycoprotein</span> Protein with oligosaccharide modifications

Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycosylation. Secreted extracellular proteins are often glycosylated.

<span class="mw-page-title-main">Protein production</span>

Protein production is the biotechnological process of generating a specific protein. It is typically achieved by the manipulation of gene expression in an organism such that it expresses large amounts of a recombinant gene. This includes the transcription of the recombinant DNA to messenger RNA (mRNA), the translation of mRNA into polypeptide chains, which are ultimately folded into functional proteins and may be targeted to specific subcellular or extracellular locations.

<span class="mw-page-title-main">Glycome</span>

The glycome is the entire complement of sugars, whether free or present in more complex molecules, of an organism. An alternative definition is the entirety of carbohydrates in a cell. The glycome may in fact be one of the most complex entities in nature. "Glycomics, analogous to genomics and proteomics, is the systematic study of all glycan structures of a given cell type or organism" and is a subset of glycobiology.

<span class="mw-page-title-main">Monoclonal antibody</span> Antibodies from clones of the same blood cell

A monoclonal antibody is an antibody produced from a cell lineage made by cloning a unique white blood cell. All subsequent antibodies derived this way trace back to a unique parent cell.

An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The part of an antibody that binds to the epitope is called a paratope. Although epitopes are usually non-self proteins, sequences derived from the host that can be recognized are also epitopes.

Haptens are small molecules that elicit an immune response only when attached to a large carrier such as a protein; the carrier may be one that also does not elicit an immune response by itself. The mechanisms of absence of immune response may vary and involve complex immunological interactions, but can include absent or insufficient co-stimulatory signals from antigen-presenting cells.

<span class="mw-page-title-main">Recombinant DNA</span> DNA molecules formed by human agency at a molecular level generating novel DNA sequences

Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination that bring together genetic material from multiple sources, creating sequences that would not otherwise be found in the genome.

Pharming, a portmanteau of "farming" and "pharmaceutical", refers to the use of genetic engineering to insert genes that code for useful pharmaceuticals into host animals or plants that would otherwise not express those genes, thus creating a genetically modified organism (GMO). Pharming is also known as molecular farming, molecular pharming or biopharming.

A biopharmaceutical, also known as a biological medical product, or biologic, is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources. Different from totally synthesized pharmaceuticals, they include vaccines, whole blood, blood components, allergenics, somatic cells, gene therapies, tissues, recombinant therapeutic protein, and living medicines used in cell therapy. Biologics can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, or may be living cells or tissues. They are isolated from living sources—human, animal, plant, fungal, or microbial. They can be used in both human and animal medicine.

Immunogenicity is the ability of a foreign substance, such as an antigen, to provoke an immune response in the body of a human or other animal. It may be wanted or unwanted:

<span class="mw-page-title-main">Immunoproteomics</span> Study of large set of protein

Immunoproteomics is the study of large sets of proteins (proteomics) involved in the immune response.

Phosphoproteomics is a branch of proteomics that identifies, catalogs, and characterizes proteins containing a phosphate group as a posttranslational modification. Phosphorylation is a key reversible modification that regulates protein function, subcellular localization, complex formation, degradation of proteins and therefore cell signaling networks. With all of these modification results, it is estimated that between 30%–65% of all proteins may be phosphorylated, some multiple times. Based on statistical estimates from many datasets, 230,000, 156,000 and 40,000 phosphorylation sites should exist in human, mouse, and yeast, respectively.

<span class="mw-page-title-main">Fusion protein</span> Protein created by joining other proteins into a single polypeptide

Fusion proteins or chimeric (kī-ˈmir-ik) proteins are proteins created through the joining of two or more genes that originally coded for separate proteins. Translation of this fusion gene results in a single or multiple polypeptides with functional properties derived from each of the original proteins. Recombinant fusion proteins are created artificially by recombinant DNA technology for use in biological research or therapeutics. Chimeric or chimera usually designate hybrid proteins made of polypeptides having different functions or physico-chemical patterns. Chimeric mutant proteins occur naturally when a complex mutation, such as a chromosomal translocation, tandem duplication, or retrotransposition creates a novel coding sequence containing parts of the coding sequences from two different genes. Naturally occurring fusion proteins are commonly found in cancer cells, where they may function as oncoproteins. The bcr-abl fusion protein is a well-known example of an oncogenic fusion protein, and is considered to be the primary oncogenic driver of chronic myelogenous leukemia.

<span class="mw-page-title-main">Protein mass spectrometry</span> Application of mass spectrometry

Protein mass spectrometry refers to the application of mass spectrometry to the study of proteins. Mass spectrometry is an important method for the accurate mass determination and characterization of proteins, and a variety of methods and instrumentations have been developed for its many uses. Its applications include the identification of proteins and their post-translational modifications, the elucidation of protein complexes, their subunits and functional interactions, as well as the global measurement of proteins in proteomics. It can also be used to localize proteins to the various organelles, and determine the interactions between different proteins as well as with membrane lipids.

A subunit vaccine is a vaccine that contains purified parts of the pathogen that are antigenic, or necessary to elicit a protective immune response. Subunit vaccine can be made from dissembled viral particles in cell culture or recombinant DNA expression, in which case it is a recombinant subunit vaccine.

<span class="mw-page-title-main">Single-cell analysis</span> Testbg biochemical processes and reactions in an individual cell

In the field of cellular biology, single-cell analysis and subcellular analysis is the study of genomics, transcriptomics, proteomics, metabolomics and cell–cell interactions at the single cell level. The concept of single-cell analysis originated in the 1970s. Before the discovery of heterogeneity, single-cell analysis mainly referred to the analysis or manipulation of an individual cell in a bulk population of cells at a particular condition using optical or electronic microscope. To date, due to the heterogeneity seen in both eukaryotic and prokaryotic cell populations, analyzing a single cell makes it possible to discover mechanisms not seen when studying a bulk population of cells. Technologies such as fluorescence-activated cell sorting (FACS) allow the precise isolation of selected single cells from complex samples, while high throughput single cell partitioning technologies, enable the simultaneous molecular analysis of hundreds or thousands of single unsorted cells; this is particularly useful for the analysis of transcriptome variation in genotypically identical cells, allowing the definition of otherwise undetectable cell subtypes. The development of new technologies is increasing our ability to analyze the genome and transcriptome of single cells, as well as to quantify their proteome and metabolome. Mass spectrometry techniques have become important analytical tools for proteomic and metabolomic analysis of single cells. Recent advances have enabled quantifying thousands of protein across hundreds of single cells, and thus make possible new types of analysis. In situ sequencing and fluorescence in situ hybridization (FISH) do not require that cells be isolated and are increasingly being used for analysis of tissues.

Recombinant antibodies are antibody fragments produced by using recombinant antibody coding genes. They mostly consist of a heavy and light chain of the variable region of immunoglobulin. Recombinant antibodies have many advantages in both medical and research applications, which make them a popular subject of exploration and new production against specific targets. The most commonly used form is the single chain variable fragment (scFv), which has shown the most promising traits exploitable in human medicine and research. In contrast to monoclonal antibodies produced by hybridoma technology, which may lose the capacity to produce the desired antibody over time or the antibody may undergo unwanted changes, which affect its functionality, recombinant antibodies produced in phage display maintain high standard of specificity and low immunogenicity.

References

  1. 1 2 "Tracking Host Cell Proteins During Biopharmaceutical Manufacturing: Advanced Methodologies to Ensure High Product Quality". www.americanpharmaceuticalreview.com. Retrieved 2018-10-02.
  2. C.H. Goey, S. Alhuthali, C. Kontoravdi (2018). "Host cell protein removal from biopharmaceutical preparations: Towards the implementation of quality by design". Biotechnology Advances. 36 (4): 1223–1237. doi:10.1016/j.biotechadv.2018.03.021. hdl: 10044/1/85952 . PMID   29654903. S2CID   4870812.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Dimitrov, Dimiter S. (2012). "Therapeutic Proteins". Methods in Molecular Biology. Molecular Biology. Vol. 899. pp. 1–26. doi:10.1007/978-1-61779-921-1_1. ISBN   978-1-61779-920-4. ISSN   1940-6029. PMC   6988726 . PMID   22735943.
  4. 1 2 3 Zhu-Shimoni, Judith; Yu, Christopher; Nishihara, Julie; Wong, Robert M.; Gunawan, Feny; Lin, Margaret; Krawitz, Denise; Liu, Peter; Sandoval, Wendy (2014-09-10). "Host cell protein testing by ELISAs and the use of orthogonal methods". Biotechnology and Bioengineering. 111 (12): 2367–2379. doi: 10.1002/bit.25327 . ISSN   0006-3592. PMID   24995961. S2CID   23923786.
  5. 1 2 3 4 5 6 Wang, Xing; Hunter, Alan K.; Mozier, Ned M. (2009-06-15). "Host cell proteins in biologics development: Identification, quantitation and risk assessment". Biotechnology and Bioengineering. 103 (3): 446–458. doi: 10.1002/bit.22304 . ISSN   0006-3592. PMID   19388135. S2CID   22707536.
  6. 1 2 3 Bracewell, Daniel G.; Francis, Richard; Smales, C. Mark (2015-07-14). "The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control". Biotechnology and Bioengineering. 112 (9): 1727–1737. doi:10.1002/bit.25628. ISSN   0006-3592. PMC   4973824 . PMID   25998019.
  7. Guiochon, Georges; Beaver, Lois Ann (2011-12-09). "Separation science is the key to successful biopharmaceuticals". Journal of Chromatography A. 1218 (49): 8836–8858. doi:10.1016/j.chroma.2011.09.008. ISSN   1873-3778. PMID   21982447.
  8. Blattner, F. R. (1997-09-05). "The Complete Genome Sequence of Escherichia coli K-12". Science. 277 (5331): 1453–1462. doi: 10.1126/science.277.5331.1453 . ISSN   0036-8075. PMID   9278503.
  9. Zagulski, M.; Herbert, C. J.; Rytka, J. (1998). "Sequencing and functional analysis of the yeast genome". Acta Biochimica Polonica. 45 (3): 627–643. doi: 10.18388/abp.1998_4201 . ISSN   0001-527X. PMID   9918489.
  10. Mouse Genome Sequencing Consortium; Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan; Rogers, Jane; Abril, Josep F.; Agarwal, Pankaj; Agarwala, Richa; Ainscough, Rachel (2002-12-05). "Initial sequencing and comparative analysis of the mouse genome". Nature. 420 (6915): 520–562. Bibcode:2002Natur.420..520W. doi: 10.1038/nature01262 . ISSN   0028-0836. PMID   12466850.
  11. Gibbs, Richard A.; Weinstock, George M.; Metzker, Michael L.; Muzny, Donna M.; Sodergren, Erica J.; Scherer, Steven; Scott, Graham; Steffen, David; Worley, Kim C. (2004-04-01). "Genome sequence of the Brown Norway rat yields insights into mammalian evolution". Nature. 428 (6982): 493–521. Bibcode:2004Natur.428..493G. doi: 10.1038/nature02426 . ISSN   1476-4687. PMID   15057822.
  12. "The Sequence of the Human Genome". Science. 291 (5507): 1155.4–1155. 2001-02-16. doi:10.1126/science.291.5507.1155d. ISSN   0036-8075. S2CID   196263909.
  13. Heissel, Søren; Bunkenborg, Jakob; Kristiansen, Max Per; Holmbjerg, Anne Fich; Grimstrup, Marie; Mørtz, Ejvind; Kofoed, Thomas; Højrup, Peter (2018-03-09). "Evaluation of spectral libraries and sample preparation for DIA-LC-MS analysis of host cell proteins: A case study of a bacterially expressed recombinant biopharmaceutical protein". Protein Expression and Purification. 147: 69–77. doi:10.1016/j.pep.2018.03.002. ISSN   1096-0279. PMID   29526817. S2CID   4741772.