Hugo J. Bellen

Last updated
Hugo J. Bellen
Hugo J. Bellen.jpg
Born1953 (age 7071)
NationalityBelgian
CitizenshipUSA
Alma mater
Awards
  • Fulbright Award (1983)
  • N.A.T.O. Fellowship (1986-1987)
  • Michael E. DeBakey, M.D., Excellence in Research Award (1995, 2016) [1]
  • The Dean's Faculty Award for Excellence in Graduate Education (1999)
  • Charles Darwin Chair in Genetics (1999)
  • The March of Dimes Chair in Developmental Biology (2000)
  • Distinguished Service Professor of BCM (2010)
  • Distinguished Alumnus Award, University of California, Davis (2011) [2]
  • The Linda and Jack Gill Distinguished Neuroscience Investigator Award (2012) [3]
  • George W. Beadle Award (2014) [4]
  • Miegunyah Distinguished Fellowship of the University of Melbourne (2015) [5]
  • Member of the United States National Academy of Sciences (2020) [6]
  • Member of the American Academy of Arts and Sciences (2020) [7]
Scientific career
Fields Genetics, Developmental Biology, Neuroscience
Institutions Baylor College of Medicine, Howard Hughes Medical Institute
Doctoral advisor John A. Kiger Jr.
Other academic advisors Walter J. Gehring, postdoctoral advisor

Hugo J. Bellen is a professor at Baylor College of Medicine and an investigator emeritus at the Howard Hughes Medical Institute [8] who studies genetics and neurobiology in the model organism, Drosophila melanogaster , the fruit fly.

Contents

Education and Career

Hugo Bellen is a Distinguished Service Professor at Baylor College of Medicine (BCM) in the Departments of Molecular and Human Genetics and Neuroscience and an Investigator Emeritus at the Howard Hughes Medical Institute. Originally from Belgium, Dr. Bellen earned a degree in Business Engineering from the Solvay School of Business at the University of Brussels, a Pre-Veterinary Medicine degree from the University of Antwerp and a doctoral degree in Veterinary Medicine from the University of Ghent. He received his Ph.D. in Genetics from the University of California at Davis and completed postdoctoral research in the laboratory of Dr. Walter Gehring at the University of Basel in Switzerland. He started his independent career as an HHMI Investigator at BCM in 1989 and joined the Neurological Research Institute at Texas Children's Hospital at its inception in 2011.

One of the world's premier researchers in Drosophila (fruit fly) genetics, Dr. Bellen's group has made major contributions to our understanding of nervous system development, synaptic transmission and mechanisms of neurodegeneration. As the head of the Drosophila Gene Disruption Project, his laboratory has developed numerous sophisticated genetic tools and generated tens of thousands of reagents that have transformed Drosophila biology.

Dr. Bellen's current research focuses on the discovery of new human disease genes and elucidating pathogenic mechanisms of neurodevelopmental and neurodegenerative diseases using fruit flies in collaborations with human geneticists worldwide. His lab is the home of the Model Organisms Screening Center for the Undiagnosed Diseases Network of the National Institutes of Health. [9] In the past few years he has made major strides in solving key problems related to Friedreich's ataxia, Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. [10]

Dr. Bellen has trained 38 graduate students, including 7 MSTP students, and 43 postdoctoral fellows who are successful in careers in academia and industry. Currently, 18 trainees are in the lab, including a mix of graduate students and postdoctoral fellows. Dr. Bellen received the BCM Presidential Award for Excellence in Leadership in Science and Research mentoring in 2018.

Dr. Bellen has organized numerous national and international meetings. He is currently co-organizer of TAGC 2020, The Allied Genetics Conference to be held in Washington, DC in 2020. He served as a member of the editorial board of the Journal of Cell Biology for 15 years, and is currently serving as a member of the editorial boards of eLife, PLoS Biology, and Genetics. He is the chair of the scientific advisory board of the Bloomington Drosophila Stock Center, and is a member of the scientific advisory boards of FlyBase, the NHGRI Alliance of Genome Resources, the Gill Center for Biomolecular Science, and the INADcure Foundation. He was previously on the scientific advisory boards of the Max Planck Institute in Göttingen, Germany, the Academia Sinica in Taipei, Taiwan, the KAIST in Daejeon, Korea, and the VIB in Leuven, Belgium.

Dr. Bellen's awards include the George Beadle Award from the Genetics Society of America; the Linda & Jack Gill Distinguished Neuroscience Investigator Award from Indiana University; the Miegunyah Distinguished Visiting Fellowship from the University of Melbourne; the Distinguished Alumnus Award from the University of California, Davis; the Michael E. DeBakey, MD, Excellence in Research Award, and the Dean's Faculty Award for Excellence in Graduate Education from Baylor College of Medicine. Dr. Bellen served as the Director of the BCM Graduate Program in Developmental Biology for more than 20 years. He is also the March of Dimes Professor in Developmental Biology and the Charles Darwin Professor in Genetics at Baylor College of Medicine. He is a member of the American Academy of Arts & Sciences and a member of the National Academy of Sciences..

Research

Neurodegeneration

Dr. Bellen's current research focuses on an effort to decipher the mechanisms by which mutations in specific genes cause neurodegeneration, and to this end, he and his colleagues performed unbiased forward genetic screens in fruitflies that detect the progressive decline in function and morphology of photoreceptor neurons. [11] To date over 165 genes that cause a neurodegenerative phenotype when mutated have been uncovered by Dr. Bellen's group using this strategy. [12] Many of these genes encode homologues of human genes that are known to cause neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) (Lou Gehrig's disease), [13] Charcot-Marie-Tooth (CMT), [14] Parkinson's disease (PD), [15] Alzheimer's disease (AD), Leigh syndrome, [16] and others, and these studies will help provide a much better understanding of the molecular mechanisms by which neurodegeneration occurs. A prevailing theme among these mutants seems to be dysfunction of the neuronal mitochondria and an increasing inability to deal with oxidative stress, which manifests as lipid droplets. [17]

Technology

Bellen has pioneered the development of novel technologies that accelerate Drosophila research and are currently used by the majority of fly labs today. Bellen was a leader in the development of P element-mediated enhancer detection which allows for discovery and manipulation of genes and was the impetus for a collaborative and ongoing project to generate an insertion collection for the community. Furthermore, Bellen and colleagues devised a new transformation technology that permits site-specific integration of very large DNA fragments, [18] which led to the generation of a collection of flies carrying molecularly defined duplications for more than 90% of the Drosophila X-chromosome. [19] Hundreds of Drosophila researchers utilize this collection. Most recently his lab created a new transposable element (MiMIC) [20] that permits even more downstream manipulations via RMCE (recombinase-mediated cassette exchange), such as protein tagging and knockdown [21] [22] and large scale homologous recombination. His research constantly evolves with the changing technology to meet the needs of the Drosophila community.

Neurotransmitter release

Bellen has made numerous important contributions in the field of synaptic transmission in Drosophila. Through unbiased forward genetic screens designed to detect perturbations in neuronal function, he has uncovered many genes involved in synaptic transmission and has used reverse genetics to help to establish their function. His lab was the first to provide in vivo evidence that Synaptotagmin 1 functions as the main Calcium sensor in synaptic transmission [23] and that Syntaxin-1A plays a critical role in synaptic vesicle (SV) fusion in vivo. [24] His lab showed that Endophilin [25] and Synaptojanin [26] control uncoating of SVs, that the V0 component of the v-ATPase affects SV fusion, [27] that synaptic mitochondria control SV dynamics, [28] and in addition discovered a novel calcium channel involved in SV biogenesis. [29] His pioneering work on synaptic vesicle trafficking molecules was later confirmed in the mouse.

Neuronal Development

Bellen and colleagues made important contributions to our understanding of Drosophila peripheral nervous system development and the fine-tuning of aspects of Notch signaling during this process. These discoveries were made by carrying out multiple forward genetic screens using the mutagen, ethyl methane sulfonate, as well as P elements. They discovered the protein Senseless [30] that is required for the development of the peripheral nervous system by boosting the action of proneural proteins and suppressing the action of Enhancer of split proteins. [31] They also discovered the protein Rumi [32] and determined it was required for O-glycosylation of Notch at many different sites and found that these sites affect the cleavage of Notch at the membrane. Their research also uncovered a critical amino acid of the Notch protein that modulates its binding with Serrate. [33] Finally, they helped elucidate the functions of several other proteins involved in the Notch pathway, including the roles of Wasp/Arp2/3, [34] Sec15, [35] Tempura, [36] and EHBP-1 [37] in Delta processing and signaling.

Personal Life

As a younger man, Dr. Bellen worked as a bar bouncer in his native Belgium. Dr. Bellen rides a 1960's vintage motorcycle to work every day.

Related Research Articles

<i>Drosophila melanogaster</i> Species of fruit fly

Drosophila melanogaster is a species of fly in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly", "pomace fly", or "banana fly". In the wild, D. melanogaster are attracted to rotting fruit and fermenting beverages, and are often found in orchards, kitchens and pubs.

<span class="mw-page-title-main">Mosaic (genetics)</span> Condition in multi-cellular organisms

Mosaicism or genetic mosaicism is a condition in which a multicellular organism possesses more than one genetic line as the result of genetic mutation. This means that various genetic lines resulted from a single fertilized egg. Mosaicism is one of several possible causes of chimerism, wherein a single organism is composed of cells with more than one distinct genotype.

<span class="mw-page-title-main">Ataxin 1</span> Protein-coding gene in the species Homo sapiens

Ataxin-1 is a DNA-binding protein which in humans is encoded by the ATXN1 gene.

AP180 is a protein that plays an important role in clathrin-mediated endocytosis of synaptic vesicles. It is capable of simultaneously binding both membrane lipids and clathrin and is therefore thought to recruit clathrin to the membrane of newly invaginating vesicles. In Drosophila melanogaster, deletion of the AP180 homologue, leads to enlarged but much fewer vesicles and an overall decrease in transmitter release. In D. melanogaster it was also shown that AP180 is also required for either recycling vesicle proteins and/or maintaining the distribution of both vesicle and synaptic proteins in the nerve terminal. A ubiquitous form of the protein in mammals, CALM, is named after its association with myeloid and lymphoid leukemias where some translocations map to this gene. The C-terminus of AP180 is a powerful and specific inhibitor of clathrin-mediated endocytosis.

<span class="mw-page-title-main">CHD7</span> Protein-coding gene in the species Homo sapiens

Chromodomain-helicase-DNA-binding protein 7 is an ATP-dependent 'chromatin' or 'nucleosome' remodeling factor that in humans is encoded by the CHD7 gene.

<span class="mw-page-title-main">JAG1</span> Protein-coding gene in the species Homo sapiens

Jagged1 (JAG1) is one of five cell surface proteins (ligands) that interact with four receptors in the mammalian Notch signaling pathway. The Notch Signaling Pathway is a highly conserved pathway that functions to establish and regulate cell fate decisions in many organ systems. Once the JAG1-NOTCH (receptor-ligand) interactions take place, a cascade of proteolytic cleavages is triggered resulting in activation of the transcription for downstream target genes. Located on human chromosome 20, the JAG1 gene is expressed in multiple organ systems in the body and causes the autosomal dominant disorder Alagille syndrome (ALGS) resulting from loss of function mutations within the gene. JAG1 has also been designated as CD339.

<span class="mw-page-title-main">KEAP1</span> Protein-coding gene in the species Homo sapiens

Kelch-like ECH-associated protein 1 is a protein that in humans is encoded by the Keap1 gene.

<span class="mw-page-title-main">SALL1</span> Protein-coding gene in the species Homo sapiens

Sal-like 1 (Drosophila), also known as SALL1, is a protein which in humans is encoded by the SALL1 gene. As the full name suggests, it is one of the human versions of the spalt (sal) gene known in Drosophila.

<span class="mw-page-title-main">SHANK2</span> Protein-coding gene in the species Homo sapiens

SH3 and multiple ankyrin repeat domains protein 2 is a protein that in humans is encoded by the SHANK2 gene. Two alternative splice variants, encoding distinct isoforms, are reported. Additional splice variants exist but their full-length nature has not been determined.

<span class="mw-page-title-main">DLL4</span> Protein-coding gene in the species Homo sapiens

Delta-like 4 is a protein that in humans is encoded by the DLL4 gene.

<span class="mw-page-title-main">ATOH1</span> Protein-coding gene in the species Homo sapiens

Protein atonal homolog 1 is a protein that in humans is encoded by the ATOH1 gene.

Rabconnectin-3A (Rbcn-3A) or DmX is a gene located on the X chromosome in Drosophila and encodes for the relatively large WD-repeat protein, rabconnectin-3A. Rabconnectin-3A is involved in Notch signalling by regulating the vacuolar proton pump V-ATPase. DmX is a highly conserved gene and is widely found in insects and mammals. Two orthologs of DmX exist in humans, DMXL1 and DMXL2, the latter of which codes for the synaptic protein rabconnectin-3α. Its name comes from the fact that it binds the Ras-related protein Rab3.

<span class="mw-page-title-main">BTBD9</span> Protein-coding gene in the species Homo sapiens

BTB domain containing 9 is a protein that in humans is encoded by the BTBD9 gene.

<span class="mw-page-title-main">Hippo signaling pathway</span> Signaling pathway that controls organ size

The Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway, is a signaling pathway that controls organ size in animals through the regulation of cell proliferation and apoptosis. The pathway takes its name from one of its key signaling components—the protein kinase Hippo (Hpo). Mutations in this gene lead to tissue overgrowth, or a "hippopotamus"-like phenotype.

<span class="mw-page-title-main">Notch proteins</span>

Notch proteins are a family of type 1 transmembrane proteins that form a core component of the Notch signaling pathway, which is highly conserved in metazoans. The Notch extracellular domain mediates interactions with DSL family ligands, allowing it to participate in juxtacrine signaling. The Notch intracellular domain acts as a transcriptional activator when in complex with CSL family transcription factors. Members of this type 1 transmembrane protein family share several core structures, including an extracellular domain consisting of multiple epidermal growth factor (EGF)-like repeats and an intracellular domain transcriptional activation domain (TAD). Notch family members operate in a variety of different tissues and play a role in a variety of developmental processes by controlling cell fate decisions. Much of what is known about Notch function comes from studies done in Caenorhabditis elegans (C.elegans) and Drosophila melanogaster. Human homologs have also been identified, but details of Notch function and interactions with its ligands are not well known in this context.

<span class="mw-page-title-main">DHHC domain</span>

In molecular biology the DHHC domain is a protein domain that acts as an enzyme, which adds a palmitoyl chemical group to proteins in order to anchor them to cell membranes. The DHHC domain was discovered in 1999 and named after a conserved sequence motif found in its protein sequence. Roth and colleagues showed that the yeast Akr1p protein could palmitoylate Yck2p in vitro and inferred that the DHHC domain defined a large family of palmitoyltransferases. In mammals twenty three members of this family have been identified and their substrate specificities investigated. Some members of the family such as ZDHHC3 and ZDHHC7 enhance palmitoylation of proteins such as PSD-95, SNAP-25, GAP43, Gαs. Others such as ZDHHC9 showed specificity only toward the H-Ras protein. However, a recent study questions the involvement of classical enzyme-substrate recognition and specificity in the palmitoylation reaction. Several members of the family have been implicated in human diseases.

<span class="mw-page-title-main">STARR-seq</span>

STARR-seq is a method to assay enhancer activity for millions of candidates from arbitrary sources of DNA. It is used to identify the sequences that act as transcriptional enhancers in a direct, quantitative, and genome-wide manner.

<span class="mw-page-title-main">CACNA2D3</span> Protein-coding gene in the species Homo sapiens

Calcium channel, voltage-dependent, alpha 2/delta subunit 3 is a protein that in humans is encoded by the CACNA2D3 gene on chromosome 3 .

Catecholamines up (Catsup) is a dopamine regulatory membrane protein that functions as a zinc ion transmembrane transporter (orthologous to ZIP7), and a negative regulator of rate-limiting enzymes involved in dopamine synthesis and transport: Tyrosine hydroxylase (TH), GTP Cyclohydrolase I (GTPCH), and Vesicular Monoamine Transporter (VMAT) in Drosophila melanogaster.

<span class="mw-page-title-main">NDUFAF6</span> Protein-coding gene in the species Homo sapiens

NADH:ubiquinone oxidoreductase complex assembly factor 6 is a protein that in humans is encoded by the NDUFAF6 gene. The protein is involved in the assembly of complex I in the mitochondrial electron transport chain. Mutations in the NDUFAF6 gene have been shown to cause Complex I deficiency, Leigh syndrome, and Acadian variant Fanconi Syndrome.

References

  1. "Bellen, Hugo J. - DeBakey Awards - Baylor College of Medicine, Houston, Texas".
  2. "Alumni Awards". Archived from the original on 2016-03-05.
  3. "IU's Gill Center honors Hugo J. Bellen and Guoping Feng for achievements in neuroscience".
  4. Bellen, HJ (2014). "Survival of the fittest tools". Genetics. 198 (2): 427–8. doi:10.1534/genetics.114.169110. PMC   4196594 . PMID   25316776.
  5. "Science Matters-Blog Archive-What flies tell us about human neurodegenerative disease".
  6. "2020 NAS Election" . Retrieved 2020-04-28.
  7. "2020 American Academy of Arts & Sciences Election" . Retrieved 2020-04-21.
  8. "Howard Hughes Medical Institute Investigators: Hugo J. Bellen, D.V.M., Ph.D." Retrieved 2014-08-24.
  9. "The Undiagnosed Diseases Network (UDN) | NRI". nri.texaschildrens.org. Retrieved 2019-11-17.
  10. Chen, Kuchuan; Ho, Tammy Szu-Yu; Lin, Guang; Tan, Kai Li; Rasband, Matthew N; Bellen, Hugo J (2016). "Loss of Frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals". eLife. 5. doi: 10.7554/eLife.20732 . ISSN   2050-084X. PMC   5130293 . PMID   27901468.
  11. Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E, Mirzaa G, Wiszniewski W, Sandoval H, Haelterman NA, Xiong B, Zhang K, Bayat V, David G, Li T, Chen K, Gala U, Harel T, Pehlivan D, Penney S, Vissers LE, de Ligt J, Jhangiani SN, Xie Y, Tsang SH, Parman Y, Sivaci M, Battaloglu E, Muzny D, Wan YW, Liu Z, Lin-Moore AT, Clark RD, Curry CJ, Link N, Schulze KL, Boerwinkle E, Dobyns WB, Allikmets R, Gibbs RA, Chen R, Lupski JR, Wangler MF, Bellen HJ (2014). "A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases". Cell. 159 (1): 200–14. doi:10.1016/j.cell.2014.09.002. PMC   4298142 . PMID   25259927.
  12. Haelterman NA, Jiang L, Li Y, Bayat V, Sandoval H, Ugur B, Tan KL, Zhang K, Bei D, Xiong B, Charng WL, Busby T, Jawaid A, David G, Jaiswal M, Venken KJ, Yamamoto S, Chen R, Bellen HJ (2014). "Large-scale identification of chemically induced mutations in Drosophila melanogaster". Genome Res. 24 (10): 1707–18. doi:10.1101/gr.174615.114. PMC   4199363 . PMID   25258387.
  13. Tsuda H, Han SM, Yang Y, Tong C, Lin YQ, Mohan K, Haueter C, Zoghbi A, Harati Y, Kwan J, Miller MA, Bellen HJ (2008). "The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors". Cell. 133 (6): 963–77. doi:10.1016/j.cell.2008.04.039. PMC   2494862 . PMID   18555774.
  14. Sandoval H, Yao CK, Chen K, Jaiswal M, Donti T, Lin YQ, Bayat V, Xiong B, Zhang K, David G, Charng WL, Yamamoto S, Duraine L, Graham BH, Bellen HJ (2014). "Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production". eLife. 3: e03558. doi: 10.7554/eLife.03558 . PMC   4215535 . PMID   25313867.
  15. Wang S, Tan KL, Agosto MA, Xiong B, Yamamoto S, Sandoval H, Jaiswal M, Bayat V, Zhang K, Charng WL, David G, Duraine L, Venkatachalam K, Wensel TG, Bellen HJ (2014). "The retromer complex is required for rhodopsin recycling and its loss leads to photoreceptor degeneration". PLOS Biol. 12 (4): e1001847. doi: 10.1371/journal.pbio.1001847 . PMC   4004542 . PMID   24781186.
  16. Zhang K, Li Z, Jaiswal M, Bayat V, Xiong B, Sandoval H, Charng WL, David G, Haueter C, Yamamoto S, Graham BH, Bellen HJ (2013). "The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit". J Cell Biol. 200 (6): 807–20. doi:10.1083/jcb.201208033. PMC   3601355 . PMID   23509070.
  17. Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, Li Z, Hui J, Graham BH, Quintana A, Bellen HJ (2015). "Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration". Cell. 160 (1–2): 177–90. doi:10.1016/j.cell.2014.12.019. PMC   4377295 . PMID   25594180.
  18. Venken KJ, He Y, Hoskins RA, Bellen HJ (2006). "P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster". Science. 314 (5806): 1747–51. Bibcode:2006Sci...314.1747V. doi: 10.1126/science.1134426 . PMID   17138868. S2CID   33007215.
  19. Venken KJ, Popodi E, Holtzman SL, Schulze KL, Park S, Carlson JW, Hoskins RA, Bellen HJ, Kaufman TC (2010). "A molecularly defined duplication set for the X chromosome of Drosophila melanogaster". Genetics. 186 (4): 1111–25. doi:10.1534/genetics.110.121285. PMC   2998297 . PMID   20876565.
  20. Venken KJ, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, Carlson JW, Levis RW, Spradling AC, Hoskins RA, Bellen HJ (2011). "MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes". Nat Methods. 8 (9): 737–43. doi:10.1038/nmeth.1662. PMC   3191940 . PMID   21985007.
  21. Nagarkar-Jaiswal S, Lee PT, Campbell ME, Chen K, Anguiano-Zarate S, Gutierrez MC, Busby T, Lin WW, He Y, Schulze KL, Booth BW, Evans-Holm M, Venken KJ, Levis RW, Spradling AC, Hoskins RA, Bellen HJ (2015). "A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila". eLife. 4: e05338. doi: 10.7554/elife.05338 . PMC   4379497 . PMID   25824290.
  22. Nagarkar-Jaiswal S, DeLuca SZ, Lee PT, Lin WW, Pan H, Zuo Z, Lv J, Spradling AC, Bellen HJ (2015). "A genetic toolkit for tagging intronic MiMIC containing genes". eLife. 4: e08469. doi: 10.7554/elife.08469 . PMC   4499919 . PMID   26102525.
  23. Littleton JT, Stern M, Schulze K, Perin M, Bellen HJ (1993). "Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca(2+)-activated neurotransmitter release". Cell. 74 (6): 1125–34. doi:10.1016/0092-8674(93)90733-7. PMID   8104705. S2CID   41084119.
  24. Schulze KL, Broadie K, Perin MS, Bellen HJ (1995). "Genetic and electrophysiological studies of Drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission". Cell. 80 (2): 311–20. doi: 10.1016/0092-8674(95)90414-x . PMID   7834751. S2CID   13024777.
  25. Verstreken P, Kjaerulff O, Lloyd TE, Atkinson R, Zhou Y, Meinertzhagen IA, Bellen HJ (2002). "Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release". Cell. 109 (1): 101–12. doi: 10.1016/s0092-8674(02)00688-8 . PMID   11955450. S2CID   11752921.
  26. Verstreken P, Koh TW, Schulze KL, Zhai RG, Hiesinger PR, Zhou Y, Mehta SQ, Cao Y, Roos J, Bellen HJ (2003). "Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating". Neuron. 40 (4): 733–48. doi: 10.1016/s0896-6273(03)00644-5 . PMID   14622578. S2CID   14150492.
  27. Hiesinger PR, Fayyazuddin A, Mehta SQ, Rosenmund T, Schulze KL, Zhai RG, Verstreken P, Cao Y, Zhou Y, Kunz J, Bellen HJ (2005). "The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila". Cell. 121 (4): 607–20. doi:10.1016/j.cell.2005.03.012. PMC   3351201 . PMID   15907473.
  28. Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005). "Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions". Neuron. 47 (3): 365–78. doi: 10.1016/j.neuron.2005.06.018 . PMID   16055061. S2CID   11579820.
  29. Yao CK, Lin YQ, Ly CV, Ohyama T, Haueter CM, Moiseenkova-Bell VY, Wensel TG, Bellen HJ (2009). "A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis". Cell. 138 (5): 947–60. doi:10.1016/j.cell.2009.06.033. PMC   2749961 . PMID   19737521.
  30. Nolo R, Abbott LA, Bellen HJ (2000). "Senseless, a Zn-finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila". Cell. 102 (3): 349–62. doi: 10.1016/s0092-8674(00)00040-4 . PMID   10975525. S2CID   4974695.
  31. Jafar-Nejad H, Acar M, Nolo R, Hacin H, Pan H, Parkhurst SM, Bellen HJ (2003). "Senseless acts as a binary switch during sensory organ precursor selection". Genes Dev. 17 (23): 2966–78. doi:10.1101/gad.1122403. PMC   289154 . PMID   14665671.
  32. Acar M, Jafar-Nejad H, Takeuchi H, Rajan A, Ibrani D, Rana NA, Pan H, Haltiwanger RS, Bellen HJ (2008). "Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling". Cell. 132 (2): 247–58. doi:10.1016/j.cell.2007.12.016. PMC   2275919 . PMID   18243100.
  33. Yamamoto S, Charng W-L, Rana NA, Kakuda S, Jaiswal M, Bayat V, Xiong B, Zhang K, Sandoval H, David G, Wang H, Haltiwanger RS, Bellen HJ (2012). "A mutation in EGF repeat 8 of Notch discriminates between Serrate/Jagged and Delta family ligands". Science. 338 (6111): 1229–32. Bibcode:2012Sci...338.1229Y. doi:10.1126/science.1228745. PMC   3663443 . PMID   23197537.
  34. Rajan A, Tien AC, Haueter CM, Schulze KL, Bellen HJ (2009). "The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors". Nat Cell Biol. 11 (7): 815–24. doi:10.1038/ncb1888. PMC   3132077 . PMID   19543274.
  35. Jafar-Nejad H, Andrews HK, Acar M, Bayat V, Wirtz-Peitz F, Mehta SQ, Knoblich JA, Bellen HJ (2005). "Sec15, a component of the exocyst, promotes Notch signaling during the asymmetric division of Drosophila sensory organ precursors". Dev Cell. 9 (3): 351–63. doi: 10.1016/j.devcel.2005.06.010 . PMID   16137928.
  36. Charng WL, Yamamoto S, Jaiswal M, Bayat V, Xiong B, Zhang K, Sandoval H, David G, Gibbs S, Lu HC, Chen K, Giagtzoglou N, Bellen HJ (2014). "Drosophila Tempura, a novel protein prenyltransferase α subunit, regulates Notch signaling via Rab1 and Rab11". PLOS Biol. 12 (1): e1001777. doi: 10.1371/journal.pbio.1001777 . PMC   3904817 . PMID   24492843.
  37. Giagtzoglou N, Yamamoto S, Zitserman D, Graves HK, Schulze KL, Wang H, Klein H, Rogiers F, Bellen HJ (2012). "dEHBP1 controls exocytosis and recycling of Delta during asymmetric divisions". J Cell Biol. 196 (1): 65–83. doi:10.1083/jcb.201106088. PMC   3255984 . PMID   22213802.