Hypromellose

Last updated
Hypromellose
Hypromellose.png
Names
Other names
Hydroxypropyl methylcellulose; hydroxypropyl methyl cellulose; HPMC; E464
Identifiers
ChemSpider
ECHA InfoCard 100.115.379 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 618-389-6
E number E464 (thickeners, ...)
UNII
  • InChI=1S/C36H70O19.C20H38O11/c1-19(37)9-45-17-27-29(47-11-21(3)39)31(48-12-22(4)40)34(51-15-25(7)43)36(54-27)55-30-28(18-46-10-20(2)38)53-35(52-16-26(8)44)33(50-14-24(6)42)32(30)49-13-23(5)41;1-21-9-11-13(23-3)15(24-4)18(27-7)20(30-11)31-14-12(10-22-2)29-19(28-8)17(26-6)16(14)25-5/h19-44H,9-18H2,1-8H3;11-20H,9-10H2,1-8H3/t19?,20?,21?,22?,23?,24?,25?,26?,27-,28-,29-,30-,31+,32+,33-,34-,35-,36+;11-,12-,13-,14-,15+,16+,17-,18-,19-,20+/m11/s1 Yes check.svgY
    Key: PUSNGFYSTWMJSK-GSZQVNRLSA-N Yes check.svgY
  • InChI=1/C36H70O19.C20H38O11/c1-19(37)9-45-17-27-29(47-11-21(3)39)31(48-12-22(4)40)34(51-15-25(7)43)36(54-27)55-30-28(18-46-10-20(2)38)53-35(52-16-26(8)44)33(50-14-24(6)42)32(30)49-13-23(5)41;1-21-9-11-13(23-3)15(24-4)18(27-7)20(30-11)31-14-12(10-22-2)29-19(28-8)17(26-6)16(14)25-5/h19-44H,9-18H2,1-8H3;11-20H,9-10H2,1-8H3/t19?,20?,21?,22?,23?,24?,25?,26?,27-,28-,29-,30-,31+,32+,33-,34-,35-,36+;11-,12-,13-,14-,15+,16+,17-,18-,19-,20+/m11/s1
    Key: PUSNGFYSTWMJSK-GSZQVNRLBE
Properties
variable
Molar mass variable
Pharmacology
S01KA02 ( WHO )
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Hypromellose (INN), short for hydroxypropyl methylcellulose (HPMC), is a semisynthetic, inert, viscoelastic polymer used in eye drops, as well as an excipient and controlled-delivery component in oral medicaments, found in a variety of commercial products. [1] [2]

Contents

As a food additive, hypromellose is an emulsifier, thickening and suspending agent, and an alternative to animal gelatin. [3] Its Codex Alimentarius code (E number) is E464.

Chemistry

Hypromellose is a solid, and is a slightly off-white to beige powder in appearance and may be formed into granules. The compound forms colloids when dissolved in water. This non-toxic ingredient is combustible and can react vigorously with oxidizing agents. [4]

Hypromellose in an aqueous solution, like methylcellulose, exhibits a thermal gelation property. That is, when the solution heats up to a critical temperature, the solution congeals into a non-flowable but semi-flexible mass. Typically, this critical (congealing) temperature is inversely related to both the solution concentration of HPMC and the concentration of the methoxy group within the HPMC molecule (which in turn depends on both the degree of substitution of the methoxy group and the molar substitution). That is, the higher the concentration of the methoxy group, the lower the critical temperature. The inflexibility/viscosity of the resulting mass, however, is directly related to the concentration of the methoxy group (the higher the concentration is, the more viscous or less flexible the resulting mass is)[ citation needed ].

Uses

There are many fields of application for hypromellose, including: [5]

Use in whole grain breads

Agricultural Research Service scientists are investigating using the plant-derived HPMC as a substitute for gluten in making all-oat and other grain breads.[ citation needed ] Gluten, which is present in wheat, rye, and barley, is absent (or present only in trace quantities) in oat and other grains. Like gluten, HPMC can trap air bubbles formed by the yeast in bread dough, causing the bread to rise.

Use in construction materials

HPMC is used primarily in construction materials like tile adhesives and renders [7] where it is used as a rheology modifier and water retention agent.

Functionally HPMC is very similar to HEMC (hydroxy ethyl methyl cellulose) Trade names include Methocel and Walocel. The global leading producer is now DuPont, formerly manufactured under Dow Wolff Cellulosics GmbH. [8]

Ophthalmic applications

Hypromellose solutions were patented as a semisynthetic substitute for tear-film. [9] Its molecular structure is predicated upon a base celluloid compound that is highly water-soluble. Post-application, celluloid attributes of good water solubility reportedly aid in visual clarity. When applied, a hypromellose solution acts to swell and absorb water, thereby expanding the thickness of the tear-film. Hypromellose augmentation therefore results in extended lubricant time presence on the cornea, which theoretically results in decreased eye irritation, especially in dry climates, home, or work environments. [10] On a molecular level, this polymer contains beta-linked D-glucose units that remain metabolically intact for days to weeks. On a manufacturing note, since hypromellose is a vegetarian substitute for gelatin, it is slightly more expensive to produce due to semisynthetic manufacturing processes. Aside from its widespread commercial and retail availability over the counter in a variety of products, hypromellose 2% solution has been documented to be used during surgery to aid in corneal protection and during orbital surgery.

Excipient/tableting ingredient

In addition to its use in ophthalmic liquids, hypromellose has been used as an excipient in oral tablet and capsule formulations, where, depending on the grade, it functions as controlled release agent to delay the release of a medicinal compound into the digestive tract. [11] It is also used as a binder [12] and as a component of tablet coatings. [13] [14]

Test methods

Various benchmark tests are used to qualify hypromellose:

Viscosity test methods

Because hypromellose solution is a non-newtonian solution and exhibits pseudoplastic, more specifically, thixotropic behavior, various test methods are available, and the results of different methods and viscosimeters do not necessarily correspond to each other. Also, due to viscometer acceptable ranges of error, viscosity is typically given as a mean, or as a range. Typical viscosity test will specify the following:

Degree of substitution

Degree of substitution is the average level of methoxy substitution on the cellulose chain. Since there are maximum three possible sites of substitution with each cellulose molecule, this average value is a real number between 0 and 3. However, degree of substitution is often expressed in percentages.

Molar substitution

Molar substitution is the average level of hydroxypropoxy substitution on the cellulose chain. Since hydroxypropoxy base can be attached to each other on side chains and does not each require a base substitution site on the cellulose molecule, this number can be higher than 3. However, molar substitution is also often expressed in percentages.

Moisture

Since all cellulose ethers are hygroscopic, they will absorb moisture from surroundings if left exposed from original packaging. Thus, moisture must be tested and weight corrected to ensure adequate amount of dry active material are apportioned for usage. Moisture is tested by weighing a sample of X grams on an analytic scale, and drying the sample in an oven at 105 °C for 2 hours, then weighing the sample again on the same scale.

See also

Related Research Articles

<span class="mw-page-title-main">Guar gum</span> Vegetable gum from the guar bean, Cyamopsis tetragonoloba

Guar gum, also called guaran, is a galactomannan polysaccharide extracted from guar beans that has thickening and stabilizing properties useful in food, feed, and industrial applications. The guar seeds are mechanically dehusked, hydrated, milled and screened according to application. It is typically produced as a free-flowing, off-white powder.

<span class="mw-page-title-main">Tablet (pharmacy)</span> Drug delivery form in which the ingredients are solidified for later consumption

A tablet is a pharmaceutical oral dosage form or solid unit dosage form. Tablets may be defined as the solid unit dosage form of medication with suitable excipients. It comprises a mixture of active substances and excipients, usually in powder form, that are pressed or compacted into a solid dose. The main advantages of tablets are that they ensure a consistent dose of medicine that is easy to consume.

An excipient is a substance formulated alongside the active ingredient of a medication. They may be used to enhance the active ingredient’s therapeutic properties; to facilitate drug absorption; to reduce viscosity; to enhance solubility; to improve long-term stabilization ; or to add bulk to solid formulations that have small amounts of potent active ingredients. During the manufacturing process, excipients can improve the handling of active substances and facilitate powder flow. The choice of excipients depends on factors such as the intended route of administration, the dosage form, and compatibility with the active ingredient.

<span class="mw-page-title-main">Hydroxypropyl cellulose</span> Chemical compound

Hydroxypropyl cellulose (HPC) is a derivative of cellulose with both water solubility and organic solubility. It is used as an excipient, and topical ophthalmic protectant and lubricant.

<span class="mw-page-title-main">Thickening agent</span> Increases the viscosity of a liquid without altering its other properties

A thickening agent or thickener is a substance which can increase the viscosity of a liquid without substantially changing its other properties. Edible thickeners are commonly used to thicken sauces, soups, and puddings without altering their taste; thickeners are also used in paints, inks, explosives, and cosmetics.

<span class="mw-page-title-main">Carboxymethyl cellulose</span> Cellulose derivative grafted with carboxymethyl groups

Carboxymethyl cellulose (CMC) or cellulose gum is a cellulose derivative with carboxymethyl groups (-CH2-COOH) bound to some of the hydroxyl groups of the glucopyranose monomers that make up the cellulose backbone. It is often used in its sodium salt form, sodium carboxymethyl cellulose. It used to be marketed under the name Tylose, a registered trademark of SE Tylose.

An enteric coating is a polymer barrier applied to oral medication that prevents its dissolution or disintegration in the gastric environment. This helps by either protecting drugs from the acidity of the stomach, the stomach from the detrimental effects of the drug, or to release the drug after the stomach. Some drugs are unstable at the pH of gastric acid and need to be protected from degradation. Enteric coating is also an effective method to obtain drug targeting. Other drugs such as some anthelmintics may need to reach a high concentration in a specific part of the intestine. Enteric coating may also be used during studies as a research tool to determine drug absorption. Enteric-coated medications pertain to the "delayed action" dosage form category. Tablets, mini-tablets, pellets and granules are the most common enteric-coated dosage forms.

<span class="mw-page-title-main">Capsule (pharmacy)</span> Relatively stable shell containing medicine

In the manufacture of pharmaceuticals, encapsulation refers to a range of dosage forms—techniques used to enclose medicines—in a relatively stable shell known as a capsule, allowing them to, for example, be taken orally or be used as suppositories. The two main types of capsules are:

<span class="mw-page-title-main">Methyl cellulose</span> Chemical compound

Methyl cellulose is a compound derived from cellulose. It is sold under a variety of trade names and is used as a thickener and emulsifier in various food and cosmetic products, and also as a bulk-forming laxative. Like cellulose, it is not digestible, non-toxic, and not an allergen. In addition to culinary uses, it is used in arts and crafts such as papier-mâché and is often the main ingredient of wallpaper paste.

An Ubbelohde type viscometer or suspended-level viscometer is a measuring instrument which uses a capillary based method of measuring viscosity. It is recommended for higher viscosity cellulosic polymer solutions. The advantage of this instrument is that the values obtained are independent of the total volume. The device was developed by the German chemist Leo Ubbelohde (1877-1964).

Pharmaceutical formulation, in pharmaceutics, is the process in which different chemical substances, including the active drug, are combined to produce a final medicinal product. The word formulation is often used in a way that includes dosage form.

<span class="mw-page-title-main">Cellulose acetate phthalate</span> Chemical compound

Cellulose acetate phthalate (CAP), also known as cellacefate (INN) and cellulosi acetas phthalas, is a commonly used polymer phthalate in the formulation of pharmaceuticals, such as the enteric coating of tablets or capsules and for controlled release formulations. It is a cellulose polymer where about half of the hydroxyls are esterified with acetyls, a quarter are esterified with one or two carboxyls of a phthalic acid, and the remainder are unchanged. It is a hygroscopic white to off-white free-flowing powder, granules, or flakes. It is tasteless and odorless, though may have a weak odor of acetic acid. Its main use in pharmaceutics is with enteric formulations. It can be used together with other coating agents, e.g. ethyl cellulose. Cellulose acetate phthalate is commonly plasticized with diethyl phthalate, a hydrophobic compound, or triethyl citrate, a hydrophilic compound; other compatible plasticizers are various phthalates, triacetin, dibutyl tartrate, glycerol, propylene glycol, tripropionin, triacetin citrate, acetylated monoglycerides, etc.

Brookfield Engineering is an engineering and manufacturing company with headquarters in Middleboro, Massachusetts. It is a subsidiary of the conglomerate Ametek. Its product line includes laboratory viscometers, rheometers, texture analyzers, and powder flow testers as well as in-line process instrumentation. These instruments are used by research, design, and process control departments.

<span class="mw-page-title-main">Thin-film drug delivery</span> Drug delivery method

Thin-film drug delivery uses a dissolving film or oral drug strip to administer drugs via absorption in the mouth and/or via the small intestines (enterically). A film is prepared using hydrophilic polymers that rapidly dissolves on the tongue or buccal cavity, delivering the drug to the systemic circulation via dissolution when contact with liquid is made.

Hydrophilization is a process used for hydrophobic drugs to increase their release rate from capsules, which is dependent on the rate of dissolution, by covering the surface of the drug particles with minute droplets of a hydrophilic polymer solution.

Microcrystalline cellulose (MCC) is a term for refined wood pulp and is used as a texturizer, an anti-caking agent, a fat substitute, an emulsifier, an extender, and a bulking agent in food production. The most common form is used in vitamin supplements or tablets. It is also used in plaque assays for counting viruses, as an alternative to carboxymethylcellulose.

Capsugel is a company that manufactures and sells two-piece hard gelatin drug capsules. Capsugel also sells equipment for filling empty and liquid capsules, as well as equipment for sealing liquid capsules.

High-maltose corn syrup (HMCS) is a food additive used as a sweetener and preservative. The majority sugar is maltose. It is less sweet than high-fructose corn syrup and contains little to no fructose. It is sweet enough to be useful as a sweetener in commercial food production, however. To be given the label "high", the syrup must contain at least 50% maltose. Typically, it contains 40–50% maltose, though some have as high as 70%.

Ophthalmic viscosurgical devices (OVDs) are a class of clear gel-like material used in eye surgery to maintain the volume and shape of the anterior chamber of the eye, and protect the intraocular tissues during the procedure. They were originally called viscoelastic substances, or just viscoelastics. Their consistency allows the surgical instruments to move through them, but when there is low shear stress they do not flow, and retain their shape, preventing collapse of the anterior chamber. OVDs are available in several formulations which may be combined or used individually as best suits the procedure, and are introduced into the anterior chamber at the start of the procedure, and removed at the end. Their tendency to remain coherent helps with removal, as the cohesive variants tend to be drawn into the aspiration orifice without breaking up.

Topical gels are a topical drug delivery dosage form commonly used in cosmetics and treatments for skin diseases because of their advantages over cream and ointment. They are formed from a mixture of gelator, solvent, active drug, and other excipients, and can be classified into organogels and hydrogels. Drug formulation and preparation methods depend on the properties of the gelators, solvents, drug and excipients used.

References

  1. de Silva DJ, Olver JM (July 2005). "Hydroxypropyl methylcellulose (HPMC) lubricant facilitates insertion of porous spherical orbital implants". Ophthal Plast Reconstr Surg. 21 (4): 301–2. doi:10.1097/01.iop.0000170417.19223.6c. PMID   16052145.
  2. Williams RO, Sykora MA, Mahaguna V (2001). "Method to recover a lipophilic drug from hydroxypropyl methylcellulose matrix tablets". AAPS PharmSciTech. 2 (2): 29–37. doi:10.1208/pt020208. PMC   2750474 . PMID   14727883.
  3. NOSB TAP Review Compiled by OMRI: Hydroxypropyl Methylcellulose
  4. Safety data for hydroxypropyl methyl cellulose [ permanent dead link ]
  5. "Example properties and applications of hydroxypropyl methyl cellulose". Archived from the original on 2010-05-04. Retrieved 2008-10-16.
  6. "HPMC". www.kimachemical.com. Retrieved 1 March 2023.
  7. Archived December 31, 2008, at the Wayback Machine
  8. "About Us". Dow.com. Archived from the original on 2013-01-04. Retrieved 2013-01-01.
  9. "US Pat. No. 5,679,713". Archived from the original on 2016-12-22. Retrieved 2007-03-23.
  10. Koroloff N, Boots R, Lipman J, Thomas P, Rickard C, Coyer F (June 2004). "A randomised controlled study of the efficacy of hypromellose and Lacri-Lube combination versus polyethylene/Cling wrap to prevent corneal epithelial breakdown in the semiconscious intensive care patient" (PDF). Intensive Care Med. 30 (6): 1122–6. doi:10.1007/s00134-004-2203-y. PMID   15014864. S2CID   28523038.
  11. Ali Nokhodchi; Shaista Raja; Pryia Patel; Kofi Asare-Addo (Nov 2012). "The Role of Oral Controlled Release Matrix Tablets in Drug Delivery Systems". Bioimpact. 2 (4): 175–87. doi:10.5681/bi.2012.027. PMC   3648939 . PMID   23678458.
  12. Weiner, Myra L.; Lois A. Kotkoskie (1999). Excipient Toxicity and Safety . Taylor & Francis. p.  8. ISBN   9780824782108.
  13. Reddy, Indra K.; Riz̤ā Miḥvar (2004). Chirality in Drug Design and Development. Taylor & Francis. p. 21. ISBN   9780824750626.
  14. Niazi, Sarfaraz (2004). Handbook of Pharmaceutical Manufacturing Formulations. pp. 275–276. ISBN   9780849317460.