This article does not cite any sources . (March 2016) (Learn how and when to remove this template message) |
In category theory, a branch of mathematics, the concept of an injective cogenerator is drawn from examples such as Pontryagin duality. Generators are objects which cover other objects as an approximation, and (dually) cogenerators are objects which envelope other objects as an approximation.
More precisely:
Assuming one has a category like that of abelian groups, one can in fact form direct sums of copies of G until the morphism
is surjective; and one can form direct products of C until the morphism
is injective.
For example, the integers are a generator of the category of abelian groups (since every abelian group is a quotient of a free abelian group). This is the origin of the term generator. The approximation here is normally described as generators and relations.
As an example of a cogenerator in the same category, we have Q/Z, the rationals modulo the integers, which is a divisible abelian group. Given any abelian group A, there is an isomorphic copy of A contained inside the product of |A| copies of Q/Z. This approximation is close to what is called the divisible envelope - the true envelope is subject to a minimality condition.
Finding a generator of an abelian category allows one to express every object as a quotient of a direct sum of copies of the generator. Finding a cogenerator allows one to express every object as a subobject of a direct product of copies of the cogenerator. One is often interested in projective generators (even finitely generated projective generators, called progenerators) and minimal injective cogenerators. Both examples above have these extra properties.
The cogenerator Q/Z is useful in the study of modules over general rings. If H is a left module over the ring R, one forms the (algebraic) character module H* consisting of all abelian group homomorphisms from H to Q/Z. H* is then a right R-module. Q/Z being a cogenerator says precisely that H* is 0 if and only if H is 0. Even more is true: the * operation takes a homomorphism
to a homomorphism
and f* is 0 if and only if f is 0. It is thus a faithful contravariant functor from left R-modules to right R-modules.
Every H* is pure-injective (also called algebraically compact). One can often consider a problem after applying the * to simplify matters.
All of this can also be done for continuous modules H: one forms the topological character module of continuous group homomorphisms from H to the circle group R/Z.
The Tietze extension theorem can be used to show that an interval is an injective cogenerator in a category of topological spaces subject to separation axioms.
In mathematics, given two groups, and, a group homomorphism from to is a function h : G → H such that for all u and v in G it holds that
In mathematics, a topological group is a group G together with a topology on G such that both the group's binary operation and the function mapping group elements to their respective inverses are continuous functions with respect to the topology. A topological group is a mathematical object with both an algebraic structure and a topological structure. Thus, one may perform algebraic operations, because of the group structure, and one may talk about continuous functions, because of the topology.
In mathematics, a ring is one of the fundamental algebraic structures used in abstract algebra. It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. Through this generalization, theorems from arithmetic are extended to non-numerical objects such as polynomials, series, matrices and functions.
In mathematics, specifically in category theory, a preadditive category is another name for an Ab-category, i.e., a category that is enriched over the category of abelian groups, Ab. That is, an Ab-categoryC is a category such that every hom-set Hom(A,B) in C has the structure of an abelian group, and composition of morphisms is bilinear, in the sense that composition of morphisms distributes over the group operation. In formulas:
In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from X to Y is often denoted with the notation X ↪ Y.
In category theory, an epimorphism is a morphism f : X → Y that is right-cancellative in the sense that, for all objects Z and all morphisms g1, g2: Y → Z,
In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.
In abstract algebra, a free abelian group or free Z-module is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis is a subset such that every element of the group can be found by adding or subtracting basis elements, and such that every element's expression as a linear combination of basis elements is unique. For instance, the integers under addition form a free abelian group with basis {1}. Addition of integers is commutative, associative, and has subtraction as its inverse operation, each integer is the sum or difference of some number of copies of the number 1, and each integer has a unique representation as an integer multiple of the number 1.
In mathematics, the cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f.
In algebraic topology, a branch of mathematics, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.
In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab.
In mathematics, especially in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an nth multiple for each positive integer n. Divisible groups are important in understanding the structure of abelian groups, especially because they are the injective abelian groups.
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, then any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in and are discussed in some detail in the textbook.
In mathematics, especially in the field of category theory, the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of model categories. The dual notion is that of a projective object.
In mathematics, especially in the area of abstract algebra known as module theory and in model theory, algebraically compact modules, also called pure-injective modules, are modules that have a certain "nice" property which allows the solution of infinite systems of equations in the module by finitary means. The solutions to these systems allow the extension of certain kinds of module homomorphisms. These algebraically compact modules are analogous to injective modules, where one can extend all module homomorphisms. All injective modules are algebraically compact, and the analogy between the two is made quite precise by a category embedding.
In mathematics, specifically category theory, a family of generators of a category is a collection of objects, indexed by some set I, such that for any two morphisms in if then there is some i in I and some morphism such that If the family consists of a single object G, we say it is a generator.
In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings and whose morphisms are ring homomorphisms. Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper.
Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.
In mathematics, a Grothendieck category is a certain kind of abelian category, introduced in Alexander Grothendieck's Tôhoku paper of 1957 in order to develop the machinery of homological algebra for modules and for sheaves in a unified manner. The theory of these categories was further developed in Pierre Gabriel's seminal thesis in 1962.