Intelectin

Last updated
Xenopus embryonic epidermal lectin
Monomeric XEEL.png
Monomeric structure of XEEL-CRD with bound D-glycerol 1-phosphate. The protein is colored using a blue-red gradient from the N- to the C- terminus. Calcium ions are shown as green spheres and the coordinated water molecules are shown as red spheres.
Identifiers
Organism Xenopus laevis
Symbolitln1
Entrez 398574
HomoloGene 111044
PDB 4WN0
RefSeq (mRNA) NM_001089101.1
RefSeq (Prot) NP_001082570.1
UniProt Q800K0
Search for
Structures Swiss-model
Domains InterPro
Human intelectin-1
Monomeric human intelectin-1.png
Monomeric structure of human intelectin with bound allyl-beta-D-galactofuranose. The protein is colored using a blue-red gradient from the N- to the C- terminus. Calcium ions are shown as green spheres and the coordinated water molecules are shown as red spheres.
Identifiers
Symbol ITLN1
Alt. symbolshIntL-1
NCBI gene 55600
HGNC 18259
OMIM 609873
PDB 4WMY
RefSeq NP_060095
UniProt Q8WWA0
Other data
Locus Chr. 1 q21.3
Search for
Structures Swiss-model
Domains InterPro

Intelectins are lectins (carbohydrate-binding proteins) expressed in humans and other chordates. Humans express two types of intelectins encoded by ITLN1 and ITLN2 genes respectively. [1] [2] Several intelectins bind microbe-specific carbohydrate residues. Therefore, intelectins have been proposed to function as immune lectins. [3] [4] Even though intelectins contain fibrinogen-like domain found in the ficolins family of immune lectins, there is significant structural divergence. [5] Thus, intelectins may not function through the same lectin-complement pathway. Most intelectins are still poorly characterized and they may have diverse biological roles. Human intelectin-1 (hIntL-1) has also been shown to bind lactoferrin, [6] but the functional consequence has yet to be elucidated. Additionally, hIntL-1 is a major component of asthmatic mucus [7] and may be involved in insulin physiology as well. [8]

Contents

Diversity

The first intelectin was discovered in Xenopus laevis oocyte and is named XL35 or XCGL-1. [9] [10] [11] X. laevis oocyte also contains a closely related XCGL-2. [12] In addition, X. laevis embryos secrete Xenopus embryonic epidermal lectin into the environmental water, presumably to bind microbes. [13] [14] XSL-1 and XSL-2 are also expressed in X. laevis serum when stimulated with lipopolysaccharide. [15] Two additional intestinal intelectins are discovered in X. laevis [16]

Human has two intelectins: hIntL-1 (omentin) and hIntL-2. [17] Mouse also has two intelectins: mIntL-1 and mIntL-2. [18]

Immune system

Several lines of evidence suggest that intelectins recognize microbes and may function as an innate immune defense protein. Tunicate intelectin is an opsonin for phagocytosis by hemocyte. [19] Amphioxus intelectin has been shown to agglutinate bacteria. [20] [21] In zebrafish and rainbow trout, intelectin expression is stimulated upon microbial exposure. [22] [23] [24] Mammals such as sheep and mice also upregulate intelectin expression upon parasitic infection. [25] [26] Increase in intelectin expression upon microbial exposure support the hypothesis that intelectins play a role in the immune system.

Structure

Although intelectins require calcium ion for function, the sequences bear no resemblance to C-type lectins. [3] In addition, merely around 50 amino acids (the fibronogen-like domain) align with any known protein, specifically the ficolin family. [2] The first structural details of an intelectin comes from the crystal structure of selenomethionine-labeled XEEL carbohydrate-recognition domain (Se-Met XEEL-CRD) solved by Se-SAD. [5] XEEL-CRD was expressed and Se-Met-labeled in High Five insect cells using a recombinant baculovirus. The fibrinogen-like fold is conserved despite amino acid sequence divergence. However, extensive insertions are present in intelectin compared to ficolins, thus making intelectin a distinct lectin structural class. [5] The Se-Met XEEL-CRD structure then enables the structure solution by molecular replacement of D-glycerol 1-phosphate (GroP)-bound XEEL-CRD, [5] apo-human intelectin-1 (hIntL-1), [4] and galactofuranose-bound hIntL-1. [4]

Each polypeptide chain of XEEL and hIntL-1 contains three bound calcium ions: two in the structural calcium site and one in the ligand binding site. [4] [5] The amino acid residues in the structural calcium site are conserved among intelectins, thus it is likely that most, if not all, intelectins have two structural calcium ions. [5]

In the ligand binding site of XEEL and hIntL-1, the exocyclic vicinal diol of the carbohydrate ligand directly coordinates to the calcium ion. [4] [5] There are large variations in the ligand binding site residues among intelectin homologs suggesting that the intelectin family may have broad ligand specificities and biological functions. [5] As there is no intelectin numbering conventions in different organisms, one should not assume functional homology based on the intelectin number. For example, hIntL-1 has glutamic acid residues in the ligand binding site to coordinate a calcium ion, while zebrafish intelectin-1 are devoided of these acidic residues. [5] Zebrafish intelectin-2 ligand binding site residues are similar to those present in hIntL-1.

Oligomeric state

hIntL-1 is a disulfide-linked trimer as shown by non-reducing SDS-PAGE [3] and X-ray crystallography. [4] Despite lacking the intermolecular disulfide bonds, XEEL-CRD is trimeric in solution. [5] The N-terminal peptide of the full length XEEL is responsible for dimerizing the trimeric XEEL-CRD into a disulfide-linked hexameric full-length XEEL. [5] Therefore, the N-termini of intelectins are often responsible for forming disulfide-linked oligomer. In intelectin homologs where the N-terminal cysteines are absent, the CRD itself may still capable of forming non-covalent oligomer in solution.

Related Research Articles

An oocyte, oöcyte, or ovocyte is a female gametocyte or germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. An oocyte is produced in a female fetus in the ovary during female gametogenesis. The female germ cells produce a primordial germ cell (PGC), which then undergoes mitosis, forming oogonia. During oogenesis, the oogonia become primary oocytes. An oocyte is a form of genetic material that can be collected for cryoconservation.

The Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.

<span class="mw-page-title-main">Epidermal growth factor</span> Protein that stimulates cell division and differentiation

Epidermal growth factor (EGF) is a protein that stimulates cell growth and differentiation by binding to its receptor, EGFR. Human EGF is 6-kDa and has 53 amino acid residues and three intramolecular disulfide bonds.

Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens. They are proteins expressed mainly by cells of the innate immune system, such as dendritic cells, macrophages, monocytes, neutrophils, as well as by epithelial cells, to identify two classes of molecules: pathogen-associated molecular patterns (PAMPs), which are associated with microbial pathogens, and damage-associated molecular patterns (DAMPs), which are associated with components of host's cells that are released during cell damage or death. They are also called primitive pattern recognition receptors because they evolved before other parts of the immune system, particularly before adaptive immunity. PRRs also mediate the initiation of antigen-specific adaptive immune response and release of inflammatory cytokines.

Collectins (collagen-containing C-type lectins) are a part of the innate immune system. They form a family of collagenous Ca2+-dependent defense lectins, which are found in animals. Collectins are soluble pattern recognition receptors (PRRs). Their function is to bind to oligosaccharide structure or lipids that are on the surface of microorganisms. Like other PRRs they bind pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) of oligosaccharide origin. Binding of collectins to microorganisms may trigger elimination of microorganisms by aggregation, complement activation, opsonization, activation of phagocytosis, or inhibition of microbial growth. Other functions of collectins are modulation of inflammatory, allergic responses, adaptive immune system and clearance of apoptotic cells.

<span class="mw-page-title-main">Langerin</span>

Langerin (CD207) is a type II transmembrane protein which is encoded by the CD207 gene in humans. It was discovered by scientists Sem Saeland and Jenny Valladeau as a main part of Birbeck granules. Langerin is C-type lectin receptor on Langerhans cells (LCs) and in mice also on dermal interstitial CD103+ dendritic cells (DC) and on resident CD8+ DC in lymph nodes.

The mannose receptor is a C-type lectin primarily present on the surface of macrophages, immature dendritic cells and liver sinusoidal endothelial cells, but is also expressed on the surface of skin cells such as human dermal fibroblasts and keratinocytes. It is the first member of a family of endocytic receptors that includes Endo180 (CD280), M-type PLA2R, and DEC-205 (CD205).

<span class="mw-page-title-main">TNFSF9</span> Mammalian protein found in Homo sapiens

Tumor necrosis factor ligand superfamily member 9 also known as 4-1BB ligand or 4-1BBL or CD137L is a protein that in humans is encoded by the TNFSF9 gene.

<span class="mw-page-title-main">EGF-like domain</span> Protein domain named after the epidermal growth factor protein

The EGF-like domain is an evolutionary conserved protein domain, which derives its name from the epidermal growth factor where it was first described. It comprises about 30 to 40 amino-acid residues and has been found in a large number of mostly animal proteins. Most occurrences of the EGF-like domain are found in the extracellular domain of membrane-bound proteins or in proteins known to be secreted. An exception to this is the prostaglandin-endoperoxide synthase. The EGF-like domain includes 6 cysteine residues which in the epidermal growth factor have been shown to form 3 disulfide bonds. The structures of 4-disulfide EGF-domains have been solved from the laminin and integrin proteins. The main structure of EGF-like domains is a two-stranded β-sheet followed by a loop to a short C-terminal, two-stranded β-sheet. These two β-sheets are usually denoted as the major (N-terminal) and minor (C-terminal) sheets. EGF-like domains frequently occur in numerous tandem copies in proteins: these repeats typically fold together to form a single, linear solenoid domain block as a functional unit.

<span class="mw-page-title-main">CLEC7A</span> Protein-coding gene in humans

C-type lectin domain family 7 member A or Dectin-1 is a protein that in humans is encoded by the CLEC7A gene. CLEC7A is a member of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily. The encoded glycoprotein is a small type II membrane receptor with an extracellular C-type lectin-like domain fold and a cytoplasmic domain with a partial immunoreceptor tyrosine-based activation motif. It functions as a pattern-recognition receptor for a variety of β-1,3-linked and β-1,6-linked glucans from fungi and plants, and in this way plays a role in innate immune response. Expression is found on myeloid dendritic cells, monocytes, macrophages and B cells. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. This gene is closely linked to other CTL/CTLD superfamily members on chromosome 12p13 in the natural killer gene complex region.

<span class="mw-page-title-main">Galectin-9</span> Protein-coding gene in the species Homo sapiens

Galectin-9 was first isolated from mouse embryonic kidney in 1997 as a 36 kDa beta-galactoside lectin protein. Human galectin-9 is encoded by the LGALS9 gene.

<span class="mw-page-title-main">KLRB1</span> Protein-coding gene in humans

Killer cell lectin-like receptor subfamily B, member 1, also known as KLRB1, NKR-P1A or CD161, is a human gene.

<span class="mw-page-title-main">Intelectin-1</span> Protein-coding gene in the species Homo sapiens

Intelectin-1, also known as omentin or intestinal lactoferrin receptor, is an intelectin encoded in humans by the ITLN1 gene. Intelectin-1 functions both as a receptor for bacterial arabinogalactans and for lactoferrin.

<span class="mw-page-title-main">KLRC2</span> Protein-coding gene in humans

NKG2-C type II integral membrane protein or NKG2C is a protein that in humans is encoded by the KLRC2 gene. It is also known as or cluster of differentiation 159c (CD159c).

<span class="mw-page-title-main">CLEC10A</span> Protein-coding gene in the species Homo sapiens

C-type lectin domain family 10 member A (CLEC10A) also designated as CD301 is a protein that in humans is encoded by the CLEC10A gene. CLEC10A is part of the C-type lectin superfamily and binds to N-Acetylgalactosamine (GalNAc). It is mainly expressed on myeloid cells and also on oocytes and very early stages of embryogenesis. CLEC10A is used as a marker of the CD1c+ dendritic cell subgroup, also called cDC2. The actions of CLEC10A are diverse, depending on the ligand and environment.

CUB domain is an evolutionarily conserved protein domain. The CUB domain is a structural motif of approximately 110 residues found almost exclusively in extracellular and plasma membrane-associated proteins, many of which are developmentally regulated. These proteins are involved in a diverse range of functions, including complement activation, developmental patterning, tissue repair, axon guidance and angiogenesis, cell signalling, fertilisation, haemostasis, inflammation, neurotransmission, receptor-mediated endocytosis, and tumour suppression. Many CUB-containing proteins are peptidases belonging to MEROPS peptidase families M12A (astacin) and S1A (chymotrypsin).

<span class="mw-page-title-main">Pulmonary surfactant protein D</span>

In molecular biology, Pulmonary surfactant protein D (SP-D) is a protein domain predominantly found in lung surfactant. This protein plays a special role; its primary task is to act as a defence protein against any pathogens that may invade the lung. It also plays a role in lubricating the lung and preventing it from collapse. It has an interesting structure as it forms a triple-helical parallel coiled coil, helps the protein to fold into a trimer.

<span class="mw-page-title-main">Intelectin-2</span> Protein-coding gene in the species Homo sapiens

Intelectin 2 is a protein that in humans is encoded by the ITLN2 gene.

<span class="mw-page-title-main">Glycan-protein interactions</span> Class of biological intermolecular interactions

Glycan-Protein interactions represent a class of biomolecular interactions that occur between free or protein-bound glycans and their cognate binding partners. Intramolecular glycan-protein (protein-glycan) interactions occur between glycans and proteins that they are covalently attached to. Together with protein-protein interactions, they form a mechanistic basis for many essential cell processes, especially for cell-cell interactions and host-cell interactions. For instance, SARS-CoV-2, the causative agent of COVID-19, employs its extensively glycosylated spike (S) protein to bind to the ACE2 receptor, allowing it to enter host cells. The spike protein is a trimeric structure, with each subunit containing 22 N-glycosylation sites, making it an attractive target for vaccine search.

<span class="mw-page-title-main">Paired receptors</span>

Paired receptors are pairs or clusters of receptor proteins that bind to extracellular ligands but have opposing activating and inhibitory signaling effects. Traditionally, paired receptors are defined as homologous pairs with similar extracellular domains and different cytoplasmic regions, whose genes are located together in the genome as part of the same gene cluster and which evolved through gene duplication. Homologous paired receptors often, but not always, have a shared ligand in common. More broadly, pairs of receptors have been identified that exhibit paired functional behavior - responding to a shared ligand with opposing intracellular signals - but are not closely homologous or co-located in the genome. Paired receptors are highly expressed in the cells of the immune system, especially natural killer (NK) and myeloid cells, and are involved in immune regulation.

References

  1. Lee JK, Baum LG, Moremen K, Pierce M (August 2004). "The X-lectins: a new family with homology to the Xenopus laevis oocyte lectin XL-35". Glycoconjugate Journal. 21 (8–9): 443–50. CiteSeerX   10.1.1.537.3931 . doi:10.1007/s10719-004-5534-6. PMID   15750785. S2CID   41789407.
  2. 1 2 Yan J, Xu L, Zhang Y, Zhang C, Zhang C, Zhao F, Feng L (Oct 2013). "Comparative genomic and phylogenetic analyses of the intelectin gene family: implications for their origin and evolution". Developmental and Comparative Immunology. 41 (2): 189–99. doi:10.1016/j.dci.2013.04.016. PMID   23643964.
  3. 1 2 3 Tsuji S, Uehori J, Matsumoto M, Suzuki Y, Matsuhisa A, Toyoshima K, Seya T (Jun 2001). "Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall". The Journal of Biological Chemistry. 276 (26): 23456–63. doi: 10.1074/jbc.M103162200 . PMID   11313366.
  4. 1 2 3 4 5 6 7 8 Wesener DA, Wangkanont K, McBride R, Song X, Kraft MB, Hodges HL, Zarling LC, Splain RA, Smith DF, Cummings RD, Paulson JC, Forest KT, Kiessling LL (Aug 2015). "Recognition of microbial glycans by human intelectin-1". Nature Structural & Molecular Biology. 22 (8): 603–10. doi:10.1038/nsmb.3053. PMC   4526365 . PMID   26148048.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 Wangkanont K, Wesener DA, Vidani JA, Kiessling LL, Forest KT (Jan 2016). "Structures of Xenopus embryonic epidermal lectin reveal a conserved mechanism of microbial glycan recognition". The Journal of Biological Chemistry. 291 (11): 5596–610. doi: 10.1074/jbc.M115.709212 . PMC   4786701 . PMID   26755729.
  6. Suzuki YA, Shin K, Lönnerdal B (Dec 2001). "Molecular cloning and functional expression of a human intestinal lactoferrin receptor". Biochemistry. 40 (51): 15771–9. doi:10.1021/bi0155899. PMID   11747454.
  7. Kerr SC, Carrington SD, Oscarson S, Gallagher ME, Solon M, Yuan S, Ahn JN, Dougherty RH, Finkbeiner WE, Peters MC, Fahy JV (Apr 2014). "Intelectin-1 is a prominent protein constituent of pathologic mucus associated with eosinophilic airway inflammation in asthma". American Journal of Respiratory and Critical Care Medicine. 189 (8): 1005–7. doi:10.1164/rccm.201312-2220LE. PMC   4098098 . PMID   24735037.
  8. Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, Shuldiner AR, Fried SK, McLenithan JC, Gong DW (Jun 2006). "Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action". American Journal of Physiology. Endocrinology and Metabolism. 290 (6): E1253–61. doi:10.1152/ajpendo.00572.2004. PMID   16531507.
  9. Roberson MM, Barondes SH (Jul 1982). "Lectin from embryos and oocytes of Xenopus laevis. Purification and properties". The Journal of Biological Chemistry. 257 (13): 7520–4. doi: 10.1016/S0021-9258(18)34409-0 . PMID   7085636.
  10. Nishihara T, Wyrick RE, Working PK, Chen YH, Hedrick JL (Oct 1986). "Isolation and characterization of a lectin from the cortical granules of Xenopus laevis eggs". Biochemistry. 25 (20): 6013–20. doi:10.1021/bi00368a027. PMID   3098282.
  11. Lee JK, Buckhaults P, Wilkes C, Teilhet M, King ML, Moremen KW, Pierce M (Apr 1997). "Cloning and expression of a Xenopus laevis oocyte lectin and characterization of its mRNA levels during early development". Glycobiology. 7 (3): 367–72. doi: 10.1093/glycob/7.3.367 . PMID   9147045.
  12. Shoji H, Ikenaka K, Nakakita S, Hayama K, Hirabayashi J, Arata Y, Kasai K, Nishi N, Nakamura T (Jul 2005). "Xenopus galectin-VIIa binds N-glycans of members of the cortical granule lectin family (xCGL and xCGL2)". Glycobiology. 15 (7): 709–20. doi: 10.1093/glycob/cwi051 . PMID   15761024.
  13. Nagata S, Nakanishi M, Nanba R, Fujita N (Jul 2003). "Developmental expression of XEEL, a novel molecule of the Xenopus oocyte cortical granule lectin family". Development Genes and Evolution. 213 (7): 368–70. doi:10.1007/s00427-003-0341-9. PMID   12802587. S2CID   41996445.
  14. Nagata S (Mar 2005). "Isolation, characterization, and extra-embryonic secretion of the Xenopus laevis embryonic epidermal lectin, XEEL". Glycobiology. 15 (3): 281–90. doi: 10.1093/glycob/cwi010 . PMID   15537792.
  15. Nagata S, Nishiyama S, Ikazaki Y (Jun 2013). "Bacterial lipopolysaccharides stimulate production of XCL1, a calcium-dependent lipopolysaccharide-binding serum lectin, in Xenopus laevis". Developmental and Comparative Immunology. 40 (2): 94–102. doi:10.1016/j.dci.2013.02.008. PMID   23454582.
  16. Nagata S (Feb 2016). "Identification and characterization of a novel intelectin in the digestive tract of Xenopus laevis". Developmental and Comparative Immunology. 59: 229–239. doi:10.1016/j.dci.2016.02.006. PMID   26855011.
  17. Lee JK, Schnee J, Pang M, Wolfert M, Baum LG, Moremen KW, Pierce M (Jan 2001). "Human homologs of the Xenopus oocyte cortical granule lectin XL35". Glycobiology. 11 (1): 65–73. doi: 10.1093/glycob/11.1.65 . PMID   11181563.
  18. Lu ZH, di Domenico A, Wright SH, Knight PA, Whitelaw CB, Pemberton AD (2011). "Strain-specific copy number variation in the intelectin locus on the 129 mouse chromosome 1". BMC Genomics. 12 (1): 110. doi: 10.1186/1471-2164-12-110 . PMC   3048546 . PMID   21324158.
  19. Abe Y, Tokuda M, Ishimoto R, Azumi K, Yokosawa H (Apr 1999). "A unique primary structure, cDNA cloning and function of a galactose-specific lectin from ascidian plasma". European Journal of Biochemistry. 261 (1): 33–9. doi: 10.1046/j.1432-1327.1999.00238.x . PMID   10103030.
  20. Yan J, Wang J, Zhao Y, Zhang J, Bai C, Zhang C, Zhang C, Li K, Zhang H, Du X, Feng L (Jul 2012). "Identification of an amphioxus intelectin homolog that preferably agglutinates gram-positive over gram-negative bacteria likely due to different binding capacity to LPS and PGN". Fish & Shellfish Immunology. 33 (1): 11–20. doi:10.1016/j.fsi.2012.03.023. PMID   22475783. S2CID   35820556.
  21. Yan J, Zhang C, Zhang Y, Li K, Xu L, Guo L, Kong Y, Feng L (May 2013). "Characterization and comparative analyses of two amphioxus intelectins involved in the innate immune response". Fish & Shellfish Immunology. 34 (5): 1139–46. doi:10.1016/j.fsi.2013.01.017. PMID   23428515.
  22. Lin B, Cao Z, Su P, Zhang H, Li M, Lin Y, Zhao D, Shen Y, Jing C, Chen S, Xu A (Mar 2009). "Characterization and comparative analyses of zebrafish intelectins: highly conserved sequences, diversified structures and functions". Fish & Shellfish Immunology. 26 (3): 396–405. doi:10.1016/j.fsi.2008.11.019. PMID   19100836.
  23. Russell S, Young KM, Smith M, Hayes MA, Lumsden JS (Jul 2008). "Identification, cloning and tissue localization of a rainbow trout (Oncorhynchus mykiss) intelectin-like protein that binds bacteria and chitin". Fish & Shellfish Immunology. 25 (1–2): 91–105. doi:10.1016/j.fsi.2008.02.018. PMID   18502147.
  24. Russell S, Hayes MA, Lumsden JS (Jan 2009). "Immunohistochemical localization of rainbow trout ladderlectin and intelectin in healthy and infected rainbow trout (Oncorhynchus mykiss)". Fish & Shellfish Immunology. 26 (1): 154–63. doi:10.1016/j.fsi.2008.03.001. PMID   19046637.
  25. Datta R, deSchoolmeester ML, Hedeler C, Paton NW, Brass AM, Else KJ (Jul 2005). "Identification of novel genes in intestinal tissue that are regulated after infection with an intestinal nematode parasite". Infection and Immunity. 73 (7): 4025–33. doi:10.1128/IAI.73.7.4025-4033.2005. PMC   1168561 . PMID   15972490.
  26. French AT, Knight PA, Smith WD, Brown JK, Craig NM, Pate JA, Miller HR, Pemberton AD (Mar 2008). "Up-regulation of intelectin in sheep after infection with Teladorsagia circumcincta". International Journal for Parasitology. 38 (3–4): 467–75. doi:10.1016/j.ijpara.2007.08.015. PMID   17983620.

Further reading