InvivoGen

Last updated
InvivoGen
Company type Private Corporation
Industry Manufacturing
Founded1997
FounderGerard Tiraby
Headquarters San Diego, CA, USA
Products
  • Innate immunity
  • Cell Culture
  • Cloning
  • Gene Expression
  • ORF
  • RNA Interference
  • Immunoglobulin
Website www.invivogen.com

Invivogen is a manufacturer of life science research products. It is based in San Diego, California and conducts business worldwide.

InvivoGen is a provider of Toll-like receptor related products (mainly ligands and engineered mammalian cell lines), selection antibiotics and mycoplasma detection & elimination products. To date, about 6500 academic papers cite InvivoGen's products.

Invivogen also provides a collection of more 1000 open reading frame of human and rodent origins.

History

Invivogen was founded in 1997 in Toulouse, France. [1] The company is known for its mycoplasma detection and removal agents and its toll-like receptor product line. Although its first products focused on gene therapy, the company now produces tools for innate immunity research, immunology research, cancer research, RNA interference, cell culture, cloning and gene expression. [2] Current products are classified as: cell lines; inhibitors; vaccine adjuvants; cloning and expression; cell culture; PRR ligants; antibodies and ELISAs; proteins and peptides; genes and promoters. [3] Invivogen also offers services for immunomodulatory compound screening and custom cloning. [4]

Related Research Articles

Molecular biology is a branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions.

<i>Mycoplasma</i> Genus of bacteria

Mycoplasma is a genus of bacteria that, like the other members of the class Mollicutes, lack a cell wall, and its peptidoglycan, around their cell membrane. The absence of peptidoglycan makes them naturally resistant to antibiotics such as the beta-lactam antibiotics that target cell wall synthesis. They can be parasitic or saprotrophic. Several species are pathogenic in humans, including M. pneumoniae, which is an important cause of "walking" pneumonia and other respiratory disorders, and M. genitalium, which is believed to be involved in pelvic inflammatory diseases. Mycoplasma species are among the smallest organisms yet discovered, can survive without oxygen, and come in various shapes. For example, M. genitalium is flask-shaped, while M. pneumoniae is more elongated, many Mycoplasma species are coccoid. Hundreds of Mycoplasma species infect animals.

<span class="mw-page-title-main">Reporter gene</span> Technique in molecular biology

In molecular biology, a reporter gene is a gene that researchers attach to a regulatory sequence of another gene of interest in bacteria, cell culture, animals or plants. Such genes are called reporters because the characteristics they confer on organisms expressing them are easily identified and measured, or because they are selectable markers. Reporter genes are often used as an indication of whether a certain gene has been taken up by or expressed in the cell or organism population.

<span class="mw-page-title-main">Chinese hamster ovary cell</span> Cell line

Chinese hamster ovary (CHO) cells are a family of immortalized cell lines derived from epithelial cells of the ovary of the Chinese hamster, often used in biological and medical research and commercially in the production of recombinant therapeutic proteins. They have found wide use in studies of genetics, toxicity screening, nutrition and gene expression, and particularly since the 1980s to express recombinant proteins. CHO cells are the most commonly used mammalian hosts for industrial production of recombinant protein therapeutics.

<span class="mw-page-title-main">Toll-like receptor</span> Class of immune system proteins

Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. They are single-spanning receptors usually expressed on sentinel cells such as macrophages and dendritic cells, that recognize structurally conserved molecules derived from microbes. Once these microbes have reached physical barriers such as the skin or intestinal tract mucosa, they are recognized by TLRs, which activate immune cell responses. The TLRs include TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12, and TLR13. Humans lack genes for TLR11, TLR12 and TLR13 and mice lack a functional gene for TLR10. The receptors TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 are located on the cell membrane, whereas TLR3, TLR7, TLR8, and TLR9 are located in intracellular vesicles.

Human embryonic kidney 293 cells, also often referred to as HEK 293, HEK-293, 293 cells, are an immortalised cell line derived from HEK cells isolated from a female fetus in the 1970s.

Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens. They are proteins expressed mainly by cells of the innate immune system, such as dendritic cells, macrophages, monocytes, neutrophils, as well as by epithelial cells, to identify two classes of molecules: pathogen-associated molecular patterns (PAMPs), which are associated with microbial pathogens, and damage-associated molecular patterns (DAMPs), which are associated with components of host's cells that are released during cell damage or death. They are also called primitive pattern recognition receptors because they evolved before other parts of the immune system, particularly before adaptive immunity. PRRs also mediate the initiation of antigen-specific adaptive immune response and release of inflammatory cytokines.

Ectopic is a word used with a prefix ecto-, meaning “out of”, and the suffix -topic, meaning "place." Ectopic expression is an abnormal gene expression in a cell type, tissue type, or developmental stage in which the gene is not usually expressed. The term ectopic expression is predominantly used in studies using metazoans, especially in Drosophila melanogaster for research purposes.

<span class="mw-page-title-main">CD14</span> Mammalian protein found in humans

CD14 is a human protein made mostly by macrophages as part of the innate immune system. It helps to detect bacteria in the body by binding lipopolysaccharide (LPS), a pathogen-associated molecular pattern (PAMP).

<span class="mw-page-title-main">MYD88</span> Protein found in humans

Myeloid differentiation primary response 88 (MYD88) is a protein that, in humans, is encoded by the MYD88 gene. originally discovered in the laboratory of Dan A. Liebermann as a Myeloid differentiation primary response gene.

<span class="mw-page-title-main">Toll-like receptor 1</span> Cell surface receptor found in humans

Toll-like receptor 1 (TLR1) is a member of Toll-like receptors (TLRs), which is a family of pattern recognition receptors (PRRs) that form the cornerstone of the innate immune system. TLR1 recognizes bacterial lipoproteins and glycolipids in complex with TLR2. TLR1 is a cell surface receptor. TLR1 is in humans encoded by the TLR1 gene, which is located on chromosome 4.

<span class="mw-page-title-main">Toll-like receptor 6</span> Protein found in humans

Toll-like receptor 6 is a protein that in humans is encoded by the TLR6 gene. TLR6 is a transmembrane protein, member of toll-like receptor family, which belongs to the pattern recognition receptor (PRR) family. TLR6 acts in a heterodimer form with toll-like receptor 2 (TLR2). Its ligands include multiple diacyl lipopeptides derived from gram-positive bacteria and mycoplasma and several fungal cell wall saccharides. After dimerizing with TLR2, the NF-κB intracellular signalling pathway is activated, leading to a pro-inflammatory cytokine production and activation of innate immune response. TLR6 has also been designated as CD286.

<span class="mw-page-title-main">Toll-like receptor 8</span> Protein found in humans

Toll-like receptor 8 is a protein that in humans is encoded by the TLR8 gene. TLR8 has also been designated as CD288. It is a member of the toll-like receptor (TLR) family.

<span class="mw-page-title-main">Toll-like receptor 10</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 10 is a protein that in humans is encoded by the TLR10 gene. TLR10 has also been designated as CD290 . TLR10 has not been extensively studied because it is a pseudogene in mice, though all other mammalian species contain an intact copy of the TLR10 gene. Unlike other TLRs, TLR10 does not activate the immune system and has instead been shown to suppress inflammatory signaling on primary human cells. This makes TLR10 unique among the TLR family. TLR10 was thought to be an "orphan" receptor, however, recent studies have identified ligands for TLR10 and these include HIV-gp41. Ligands for TLR2 are potential ligands for TLR10.

<span class="mw-page-title-main">Thymic stromal lymphopoietin</span> Cytokine, alarmin, and growth factor.

Thymic stromal lymphopoietin (TSLP) is an interleukin (IL)-2-like cytokine, alarmin, and growth factor involved in numerous physiological and pathological processes, primarily those of the immune system. It shares a common ancestor with IL-7.

<span class="mw-page-title-main">MARCO</span> Protein-coding gene in the species Homo sapiens

Macrophage receptor with collagenous structure (MARCO) is a protein that in humans is encoded by the MARCO gene. MARCO is a class A scavenger receptor that is found on particular subsets of macrophages. Scavenger receptors are pattern recognition receptors (PRRs) found most commonly on immune cells. Their defining feature is that they bind to polyanions and modified forms of a type of cholesterol called low-density lipoprotein (LDL). MARCO is able to bind and phagocytose these ligands and pathogen-associated molecular patterns (PAMPs), leading to the clearance of pathogens and cell signaling events that lead to inflammation. As part of the innate immune system, MARCO clears, or scavenges, pathogens, which leads to inflammatory responses. The scavenger receptor cysteine-rich (SRCR) domain at the end of the extracellular side of MARCO binds ligands to activate the subsequent immune responses. MARCO expression on macrophages has been associated with tumor development and also with Alzheimer's disease, via decreased responses of cells when ligands bind to MARCO.

Resistance genes (R-Genes) are genes in plant genomes that convey plant disease resistance against pathogens by producing R proteins. The main class of R-genes consist of a nucleotide binding domain (NB) and a leucine rich repeat (LRR) domain(s) and are often referred to as (NB-LRR) R-genes or NLRs. Generally, the NB domain binds either ATP/ADP or GTP/GDP. The LRR domain is often involved in protein-protein interactions as well as ligand binding. NB-LRR R-genes can be further subdivided into toll interleukin 1 receptor (TIR-NB-LRR) and coiled-coil (CC-NB-LRR).

Heterologous expression refers to the expression of a gene or part of a gene in a host organism that does not naturally have the gene or gene fragment in question. Insertion of the gene in the heterologous host is performed by recombinant DNA technology. The purpose of heterologous expression is often to determine the effects of mutations and differential interactions on protein function. It provides an easy path to efficiently express and experiment with combinations of genes and mutants that do not naturally occur.

<span class="mw-page-title-main">Zeocin</span> Chemical compound

Zeocin is a trade name for a formulation of phleomycin D1, a glycopeptide antibiotic and one of the phleomycins from Streptomyces verticillus belonging to the bleomycin family of antibiotics. It is a broad-spectrum antibiotic that is effective against most aerobic organisms including bacteria, filamentous fungi, yeast, plant, and animal cells. It causes cell death by intercalating into DNA and inducing double stranded breaks of the DNA.

Clare Bryant FLSW is a British veterinary scientist and clinical pharmacologist who is a professor at the University of Cambridge. She specialises in innate immunity. Bryant is a Fellow of Queens' College, Cambridge and of the British Pharmacological Society.

References

  1. "InvivoGen LinkedIn". LinkedIn. Retrieved November 30, 2022.
  2. "Tools for Cell Culture, Immunology and Molecular Biology". InvivoGen. 2016-09-12. Retrieved 2022-10-31.
  3. "Tools for Cell Culture, Immunology and Molecular Biology". InvivoGen. 2016-09-12. Retrieved 2022-11-30.
  4. "TLR and PRR Screening Service, Custom Cloning". InvivoGen. 2016-09-12. Retrieved 2022-11-30.