Cancer research is research into cancer to identify causes and develop strategies for prevention, diagnosis, treatment, and cure.
Cancer research ranges from epidemiology, molecular bioscience to the performance of clinical trials to evaluate and compare applications of the various cancer treatments. These applications include surgery, radiation therapy, chemotherapy, hormone therapy, immunotherapy and combined treatment modalities such as chemo-radiotherapy. Starting in the mid-1990s, the emphasis in clinical cancer research shifted towards therapies derived from biotechnology research, such as cancer immunotherapy and gene therapy.
Cancer research is done in academia, research institutes, and corporate environments, and is largely government funded.[ citation needed ]
Cancer research has been ongoing for centuries. Early research focused on the causes of cancer. [1] Percivall Pott identified the first environmental trigger (chimney soot) for cancer in 1775 and cigarette smoking was identified as a cause of lung cancer in 1950. Early cancer treatment focused on improving surgical techniques for removing tumors. Radiation therapy took hold in the 1900s. Chemotherapeutics were developed and refined throughout the 20th century.
The U.S. declared a "War on Cancer" in the 1970s, and increased the funding and support for cancer research. [2]
Some of the most highly cited and most influential research reports include:
Cancer research encompasses a variety of types and interdisciplinary areas of research. Scientists involved in cancer research may be trained in areas such as chemistry, biochemistry, molecular biology, physiology, medical physics, epidemiology, and biomedical engineering. Research performed on a foundational level is referred to as basic research and is intended to clarify scientific principles and mechanisms. Translational research aims to elucidate mechanisms of cancer development and progression and transform basic scientific findings into concepts that can be applicable to the treatment and prevention of cancer. Clinical research is devoted to the development of pharmaceuticals, surgical procedures, and medical technologies for the eventual treatment of patients.
Epidemiologic analysis indicates that at least 35% of all cancer deaths in the world could now be avoided by primary prevention. [3] According to a newer GBD systematic analysis, in 2019, ~44% of all cancer deaths — or ~4.5 million deaths or ~105 million lost disability-adjusted life years — were due to known clearly preventable risk factors , led by smoking, alcohol use and high BMI. [4]
However, one 2015 study suggested that between ~70% and ~90% of cancers are due to environmental factors and therefore potentially preventable. [5] [ contradictory ] Furthermore, it is estimated that with further research cancer death rates could be reduced by 70% around the world even without the development of any new therapies. [3] Cancer prevention research receives only 2–9% of global cancer research funding, [3] albeit many of the options for prevention are already well-known without further cancer-specific research but are not reflected in economics and policy. Mutational signatures of various cancers, for example, could reveal further causes of cancer and support causal attribution. [6] [ additional citation(s) needed ]
Prompt detection of cancer is important, since it is usually more difficult to treat in later stages. Accurate detection of cancer is also important because false positives can cause harm from unnecessary medical procedures. Some screening protocols are currently not accurate (such as prostate-specific antigen testing). Others such as a colonoscopy or mammogram are unpleasant and as a result some patients may opt out. Active research is underway to address all these problems, to develop novel ways of cancer screening and to increase detection rates.[ citation needed ][ further explanation needed ]
For example:
Emerging topics of cancer treatment research include:
Research into the cause of cancer involves many different disciplines including genetics, diet, environmental factors (i.e. chemical carcinogens). In regard to investigation of causes and potential targets for therapy, the route used starts with data obtained from clinical observations, enters basic research, and, once convincing and independently confirmed results are obtained, proceeds with clinical research, involving appropriately designed trials on consenting human subjects, with the aim to test safety and efficiency of the therapeutic intervention method. An important part of basic research is characterization of the potential mechanisms of carcinogenesis, in regard to the types of genetic and epigenetic changes that are associated with cancer development. The mouse is often used as a mammalian model for manipulation of the function of genes that play a role in tumor formation, while basic aspects of tumor initiation, such as mutagenesis, are assayed on cultures of bacteria and mammalian cells.
The goal of oncogenomics is to identify new oncogenes or tumor suppressor genes that may provide new insights into cancer diagnosis, predicting clinical outcome of cancers, and new targets for cancer therapies. As the Cancer Genome Project stated in a 2004 review article, "a central aim of cancer research has been to identify the mutated genes that are causally implicated in oncogenesis (cancer genes)." [32] The Cancer Genome Atlas project is a related effort investigating the genomic changes associated with cancer, while the COSMIC cancer database documents acquired genetic mutations from hundreds of thousands of human cancer samples. [33]
These large scale projects, involving about 350 different types of cancer, have identified ~130,000 mutations in ~3000 genes that have been mutated in the tumors. The majority occurred in 319 genes, of which 286 were tumor suppressor genes and 33 oncogenes.
Several hereditary factors can increase the chance of cancer-causing mutations, including the activation of oncogenes or the inhibition of tumor suppressor genes. The functions of various onco- and tumor suppressor genes can be disrupted at different stages of tumor progression. Mutations in such genes can be used to classify the malignancy of a tumor.
In later stages, tumors can develop a resistance to cancer treatment. The identification of oncogenes and tumor suppressor genes is important to understand tumor progression and treatment success. The role of a given gene in cancer progression may vary tremendously, depending on the stage and type of cancer involved. [34]
Many dietary recommendations have been proposed to reduce the risk of cancer, few have significant supporting scientific evidence. [42] [43] [44] Obesity and drinking alcohol have been correlated with the incidence and progression of some cancers. [42] Lowering the consumption of sweetened beverages is recommended as a measure to address obesity. [45]
Some specific foods are linked to specific cancers. There is strong evidence that processed meat and red meat intake increases risk of colorectal cancer. [46] [47] [48] [49] Aflatoxin B1, a frequent food contaminant, increases risk of liver cancer, [50] while drinking coffee is associated with a reduced risk. [51] Betel nut chewing causes oral cancer. [50] Stomach cancer is more common in Japan due to its high-salt diet. [50] [52]
Dietary recommendations for cancer prevention typically include weight management and eating a healthy diet, consisting mainly of "vegetables, fruit, whole grains and fish, and a reduced intake of red meat, animal fat, and refined sugar." [42] A healthy dietary pattern may lower cancer risk by 10–20%. [53] There is no clinical evidence that diets or specific foods can cure cancer. [54] [55]Periods of intermittent fasting (time-restricted feeding which may not include caloric restriction) is investigated for potential usefulness in cancer prevention and treatment and as of 2021 additional trials are needed to elucidate the risks and benefits. [56] [57] [58] [59] In some cases, "caloric restrictions could hinder both cancer growth and progression, besides enhancing the efficacy of chemotherapy and radiation therapy". [60] Caloric restriction mimetics, including some present in foods like spermidine, are also investigated for these or similar reasons. [61] [62] Such and similar dietary supplements may contribute to prevention or treatment, with candidate substances including apigenin, [63] [64] [65] berberine, [66] [67] [68] [69] [70] jiaogulan, [71] and rhodiola rosea. [72] [73]
Cancer research is funded by government grants, charitable foundations and pharmaceutical and biotechnology companies. [74]
In the early 2000s, most funding for cancer research came from taxpayers and charities, rather than from corporations. In the US, less than 30% of all cancer research was funded by commercial researchers such as pharmaceutical companies. [75] Per capita, public spending on cancer research by taxpayers and charities in the US was five times as much in 2002–03 as public spending by taxpayers and charities in the 15 countries that were full members of the European Union. [75] As a percentage of GDP, the non-commercial funding of cancer research in the US was four times the amount dedicated to cancer research in Europe. [75] Half of Europe's non-commercial cancer research is funded by charitable organizations. [75]
The National Cancer Institute is the major funding institution in the United States. In the 2023 fiscal year, the NCI funded $7.1 billion in cancer research. [76]
Difficulties inherent to cancer research are shared with many types of biomedical research.
Cancer research processes have been criticised. These include, especially in the US, for the financial resources and positions required to conduct research. Other consequences of competition for research resources appear to be a substantial number of research publications whose results cannot be replicated. [77] [78] [79] [80]
One can share computer time for distributed cancer research projects like Help Conquer Cancer. [86] World Community Grid also had a project called Help Defeat Cancer. Other related projects include the Folding@home and Rosetta@home projects, which focus on groundbreaking protein folding and protein structure prediction research. Vodafone has also partnered with the Garvan Institute to create the DreamLab Project, which uses distributed computing via an app on cellphones to perform cancer research.
Members of the public can also join clinical trials as healthy control subjects or for methods of cancer detection.
There could be software and data-related procedures that increase participation in trials and make them faster and less expensive. One open source platform matches genomically profiled cancer patients to precision medicine drug trials. [88] [87]
Organizations exist as associations for scientists participating in cancer research, such as the American Association for Cancer Research and American Society of Clinical Oncology, and as foundations for public awareness or raising funds for cancer research, such as Relay For Life and the American Cancer Society.
Supporters of different types of cancer have adopted different colored awareness ribbons and promote months of the year as being dedicated to the support of specific types of cancer. [89] The American Cancer Society began promoting October as Breast Cancer Awareness Month in the United States in the 1980s. Pink products are sold to both generate awareness and raise money to be donated for research purposes. This has led to pinkwashing, or the selling of ordinary products turned pink as a promotion for the company.
Experimental cancer treatments are mainstream medical therapies intended to treat cancer by improving on, supplementing or replacing conventional methods. However, researchers are still trying to determine whether these treatments are safe and effective treatments. Experimental cancer treatments are normally available only to people who participate in formal research programs, which are called clinical trials. Occasionally, a seriously ill person may be able to access an experimental drug through an expanded access program. Some of the treatments have regulatory approval for treating other conditions. Health insurance and publicly funded health care programs normally refuse to pay for experimental cancer treatments.
A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results in a loss or reduction in its function. In combination with other genetic mutations, this could allow the cell to grow abnormally. The loss of function for these genes may be even more significant in the development of human cancers, compared to the activation of oncogenes.
Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal bleeding, prolonged cough, unexplained weight loss, and a change in bowel movements. While these symptoms may indicate cancer, they can also have other causes. Over 100 types of cancers affect humans.
Colorectal cancer (CRC), also known as bowel cancer, colon cancer, or rectal cancer, is the development of cancer from the colon or rectum. Signs and symptoms may include blood in the stool, a change in bowel movements, weight loss, abdominal pain and fatigue. Most colorectal cancers are due to lifestyle factors and genetic disorders. Risk factors include diet, obesity, smoking, and lack of physical activity. Dietary factors that increase the risk include red meat, processed meat, and alcohol. Another risk factor is inflammatory bowel disease, which includes Crohn's disease and ulcerative colitis. Some of the inherited genetic disorders that can cause colorectal cancer include familial adenomatous polyposis and hereditary non-polyposis colon cancer; however, these represent less than 5% of cases. It typically starts as a benign tumor, often in the form of a polyp, which over time becomes cancerous.
A glioma is a type of primary tumor that starts in the glial cells of the brain or spinal cord. They are cancerous but some are extremely slow to develop. Gliomas comprise about 30 percent of all brain tumors and central nervous system tumours, and 80 percent of all malignant brain tumours.
Glioblastoma, previously known as glioblastoma multiforme (GBM), is the most aggressive and most common type of cancer that originates in the brain, and has a very poor prognosis for survival. Initial signs and symptoms of glioblastoma are nonspecific. They may include headaches, personality changes, nausea, and symptoms similar to those of a stroke. Symptoms often worsen rapidly and may progress to unconsciousness.
Neuroblastoma (NB) is a type of cancer that forms in certain types of nerve tissue. It most frequently starts from one of the adrenal glands but can also develop in the head, neck, chest, abdomen, or spine. Symptoms may include bone pain, a lump in the abdomen, neck, or chest, or a painless bluish lump under the skin.
Non-small-cell lung cancer (NSCLC), or non-small-cell lung carcinoma, is any type of epithelial lung cancer other than small-cell lung cancer (SCLC). NSCLC accounts for about 85% of all lung cancers. As a class, NSCLCs are relatively insensitive to chemotherapy, compared to small-cell carcinoma. When possible, they are primarily treated by surgical resection with curative intent, although chemotherapy has been used increasingly both preoperatively and postoperatively.
Oncogenomics is a sub-field of genomics that characterizes cancer-associated genes. It focuses on genomic, epigenomic and transcript alterations in cancer.
KRAS is a gene that provides instructions for making a protein called K-Ras, a part of the RAS/MAPK pathway. The protein relays signals from outside the cell to the cell's nucleus. These signals instruct the cell to grow and divide (proliferate) or to mature and take on specialized functions (differentiate). It is called KRAS because it was first identified as a viral oncogene in the KirstenRAt Sarcoma virus. The oncogene identified was derived from a cellular genome, so KRAS, when found in a cellular genome, is called a proto-oncogene.
Liver cancer, also known as hepatic cancer, primary hepatic cancer, or primary hepatic malignancy, is cancer that starts in the liver. Liver cancer can be primary in which the cancer starts in the liver, or it can be liver metastasis, or secondary, in which the cancer spreads from elsewhere in the body to the liver. Liver metastasis is the more common of the two liver cancers. Instances of liver cancer are increasing globally.
CDKN2A, also known as cyclin-dependent kinase inhibitor 2A, is a gene which in humans is located at chromosome 9, band p21.3. It is ubiquitously expressed in many tissues and cell types. The gene codes for two proteins, including the INK4 family member p16 and p14arf. Both act as tumor suppressors by regulating the cell cycle. p16 inhibits cyclin dependent kinases 4 and 6 and thereby activates the retinoblastoma (Rb) family of proteins, which block traversal from G1 to S-phase. p14ARF activates the p53 tumor suppressor. Somatic mutations of CDKN2A are common in the majority of human cancers, with estimates that CDKN2A is the second most commonly inactivated gene in cancer after p53. Germline mutations of CDKN2A are associated with familial melanoma, glioblastoma and pancreatic cancer. The CDKN2A gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.
Somatic evolution is the accumulation of mutations and epimutations in somatic cells during a lifetime, and the effects of those mutations and epimutations on the fitness of those cells. This evolutionary process has first been shown by the studies of Bert Vogelstein in colon cancer. Somatic evolution is important in the process of aging as well as the development of some diseases, including cancer.
Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death or death of an organism. Although the foregoing explanation is wider than this, it is common when referring to synthetic lethality to mean the situation arising by virtue of a combination of deficiencies of two or more genes leading to cell death, whereas a deficiency of only one of these genes does not. In a synthetic lethal genetic screen, it is necessary to begin with a mutation that does not result in cell death, although the effect of that mutation could result in a differing phenotype, and then systematically test other mutations at additional loci to determine which, in combination with the first mutation, causes cell death arising by way of deficiency or abolition of expression.
Cancer treatments are a wide range of treatments available for the many different types of cancer, with each cancer type needing its own specific treatment. Treatments can include surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy including small-molecule drugs or monoclonal antibodies, and PARP inhibitors such as olaparib. Other therapies include hyperthermia, immunotherapy, photodynamic therapy, and stem-cell therapy. Most commonly cancer treatment involves a series of separate therapies such as chemotherapy before surgery. Angiogenesis inhibitors are sometimes used to enhance the effects of immunotherapies.
Embryonal rhabdomyosarcoma (EMRS) is a rare histological form of cancer in the connective tissue wherein the mesenchymally-derived cells (rhabdomyoblasts) resemble the primitive developing skeletal muscle of the embryo. It is the most common soft tissue sarcoma occurring in children. Embryonal rhabdomyosarcoma is also known as PAX-fusion negative or fusion-negative rhabdomyosarcoma, as tumors of this subtype are unified by their lack of a PAX3-FOXO1 fusion oncogene. Fusion status refers to the presence or absence of a fusion gene, which is a gene formed from joining two different genes together through DNA rearrangements. These types of tumors are classified as embryonal rhabdomyosarcoma "because of their remarkable resemblance to developing embryonic and fetal skeletal muscle."
A cancer biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker may be a molecule secreted by a tumor or a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic, glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis, and epidemiology. Ideally, such biomarkers can be assayed in non-invasively collected biofluids like blood or serum.
Cancer epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve a change in the nucleotide sequence, but instead involve a change in the way the genetic code is expressed. Epigenetic mechanisms are necessary to maintain normal sequences of tissue specific gene expression and are crucial for normal development. They may be just as important, if not even more important, than genetic mutations in a cell's transformation to cancer. The disturbance of epigenetic processes in cancers, can lead to a loss of expression of genes that occurs about 10 times more frequently by transcription silencing than by mutations. As Vogelstein et al. points out, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. However, in colon tumors compared to adjacent normal-appearing colonic mucosa, there are about 600 to 800 heavily methylated CpG islands in the promoters of genes in the tumors while these CpG islands are not methylated in the adjacent mucosa. Manipulation of epigenetic alterations holds great promise for cancer prevention, detection, and therapy. In different types of cancer, a variety of epigenetic mechanisms can be perturbed, such as the silencing of tumor suppressor genes and activation of oncogenes by altered CpG island methylation patterns, histone modifications, and dysregulation of DNA binding proteins. There are several medications which have epigenetic impact, that are now used in a number of these diseases.
Pharmacoepigenetics is an emerging field that studies the underlying epigenetic marking patterns that lead to variation in an individual's response to medical treatment.
Epigenetic priming is the modification to a cell's epigenome whereby specific chromatin domains within a cell are converted from a closed state to an open state, usually as the result of an external biological trigger or pathway, allowing for DNA access by transcription factors or other modification mechanisms. The action of epigenetic priming for a certain region of DNA dictates how other gene regulation mechanisms will be able to act on the DNA later in the cell’s life. Epigenetic priming has been chiefly investigated in neuroscience and cancer research, as it has been found to play a key role in memory formation within neurons and tumor-suppressor gene activation in cancer treatment respectively.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)