Iodobenzene dichloride

Last updated
Iodobenzene dichloride [1]
PhICl2-2D-skeletal.png
Iodobenzene-dichloride-from-xtal-3D-sf.png
Names
Preferred IUPAC name
Dichloro(phenyl)-λ3-iodane
Other names
Iodosobenzene dichloride; Phenyliodine(III) dichloride; Phenyliodo dichloride; Phenyliodoso chloride; Phenylchloroiodonium chloride; Dichloroiodobenzene; Iododichlorobenzene
Identifiers
3D model (JSmol)
AbbreviationsIBD
ChemSpider
PubChem CID
UNII
  • Cl[I](c1ccccc1)Cl
Properties
C6H5Cl2I
Molar mass 274.91 g·mol−1
AppearanceYellow solid
Density 2.2 g/cm3
Melting point 115 to 120 °C (239 to 248 °F; 388 to 393 K) (decomposes)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Iodobenzene dichloride (PhICl2) is a complex of iodobenzene with chlorine. As a reagent for organic chemistry, it is used as an oxidant and chlorinating agent.

Contents

Chemical structure

Single-crystal X-ray crystallography has been used to determine its structure; as can be predicted by VSEPR theory, it adopts a T-shaped geometry about the central iodine atom. [2]

Preparation

Iodobenzene dichloride is not stable and is not commonly available commercially. It is prepared by passing chlorine gas through a solution of iodobenzene in chloroform, from which it precipitates. [3] The same reaction has been reported at pilot plant scale (20 kg) as well. [4]

Ph-I + Cl2 → PhICl2

An alternate preparation involving the use of chlorine generated in situ by the action of sodium hypochlorite on hydrochloric acid has also been described. [5]

Reactions

Iodobenzene dichloride is hydrolyzed by basic solutions to give iodosobenzene (PhIO) [6] and is oxidized by sodium hypochlorite to give iodoxybenzene (PhIO2). [7]

In organic synthesis, iodobenzene dichloride is used as a reagent for the selective chlorination of alkenes. [1] and alkynes. [8]

Related Research Articles

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agent. It is used as a water cleaner and as an etchant for metals.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens. Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

<span class="mw-page-title-main">Acyl halide</span> Oxoacid compound with an –OH group replaced by a halogen

In organic chemistry, an acyl halide is a chemical compound derived from an oxoacid by replacing a hydroxyl group with a halide group.

<span class="mw-page-title-main">Manganese(II) chloride</span> Chemical compound

Manganese(II) chloride is the dichloride salt of manganese, MnCl2. This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl2·2H2O) and tetrahydrate (MnCl2·4H2O), with the tetrahydrate being the most common form. Like many Mn(II) species, these salts are pink, with the paleness of the color being characteristic of transition metal complexes with high spin d5 configurations.

The Hofmann rearrangement is the organic reaction of a primary amide to a primary amine with one less carbon atom. The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate. The reaction can form a wide range of products, including alkyl and aryl amines.

<span class="mw-page-title-main">Benzoyl chloride</span> Organochlorine compound (C7H5ClO)

Benzoyl chloride, also known as benzenecarbonyl chloride, is an organochlorine compound with the formula C7H5ClO. It is a colourless, fuming liquid with an irritating odour, and consists of a benzene ring with an acyl chloride substituent. It is mainly useful for the production of peroxides but is generally useful in other areas such as in the preparation of dyes, perfumes, pharmaceuticals, and resins.

The Bouveault–Blanc reduction is a chemical reaction in which an ester is reduced to primary alcohols using absolute ethanol and sodium metal. It was first reported by Louis Bouveault and Gustave Louis Blanc in 1903. Bouveault and Blanc demonstrated the reduction of ethyl oleate and n-butyl oleate to oleyl alcohol. Modified versions of which were subsequently refined and published in Organic Syntheses.

Dichlorocarbene is the reactive intermediate with chemical formula CCl2. Although this chemical species has not been isolated, it is a common intermediate in organic chemistry, being generated from chloroform. This bent diamagnetic molecule rapidly inserts into other bonds.

<span class="mw-page-title-main">1,4-Benzoquinone</span> Chemical compound

1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound.

<span class="mw-page-title-main">Tebbe's reagent</span> Chemical compound

Tebbe's reagent is the organometallic compound with the formula (C5H5)2TiCH2ClAl(CH3)2. It is used in the methylidenation of carbonyl compounds, that is it converts organic compounds containing the R2C=O group into the related R2C=CH2 derivative. It is a red solid that is pyrophoric in the air, and thus is typically handled with air-free techniques. It was originally synthesized by Fred Tebbe at DuPont Central Research.

<span class="mw-page-title-main">Thiophosgene</span> Chemical compound

Thiophosgene is a red liquid with the formula CSCl2. It is a molecule with trigonal planar geometry. There are two reactive C–Cl bonds that allow it to be used in diverse organic syntheses.

Chloramines refer to derivatives of ammonia and organic amines wherein one or more N−H bonds have been replaced by N−Cl bonds. Two classes of compounds are considered: inorganic chloramines and organic chloramines.

<span class="mw-page-title-main">Iodosobenzene</span> Chemical compound

Iodosobenzene or iodosylbenzene is an organoiodine compound with the empirical formula C6H5IO. This colourless solid compound is used as an oxo transfer reagent in research laboratories examining organic and coordination chemistry.

<span class="mw-page-title-main">Diphenylacetylene</span> Chemical compound

Diphenylacetylene is the chemical compound C6H5C≡CC6H5. The molecule consists of two phenyl groups attached to a C2 unit. A colorless solid, it is used as a building block in organic synthesis and as a ligand in organometallic chemistry.

Unlike its lighter congeners, the halogen iodine forms a number of stable organic compounds, in which iodine exhibits higher formal oxidation states than -1 or coordination number exceeding 1. These are the hypervalent organoiodines, often called iodanes after the IUPAC rule used to name them.

<span class="mw-page-title-main">Triphenylphosphine dichloride</span> Chemical compound

Triphenylphosphine dichloride, (C6H5)3PCl2, is a chlorinating agent widely used in organic chemistry. Applications include the conversion of alcohols and ethers to alkyl chlorides, the cleavage of epoxides to vicinal dichlorides and the chlorination of carboxylic acids to acyl chlorides.

Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters where the carbon carries a higher oxidation state. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids.

<span class="mw-page-title-main">(Diacetoxyiodo)benzene</span> Chemical compound

(Diacetoxyiodo)benzene, also known as phenyliodine(III) diacetate (PIDA) is a hypervalent iodine chemical with the formula C
6
H
5
I(OCOCH
3
)
2
. It is used as an oxidizing agent in organic chemistry.

<i>tert</i>-Butyl hypochlorite Chemical compound

tert-Butyl hypochlorite is the organic compound with the formula (CH3)3COCl. A yellow liquid, it is a rare example of an organic hypochlorite, i.e. a compound with an O-Cl bond. It is a reactive material that is useful for chlorinations. It can be viewed as a lipophilic version of sodium hypochlorite (bleach).

References

  1. 1 2 Phenyliodine(III) Dichloride, David W. Knight and Glen A. Russell, in Encyclopedia of Reagents for Organic Synthesis , 2001, John Wiley & Sons, Ltd doi:10.1002/047084289X.rp071
  2. E. M. Archer and T. G. van Schalkwy (1953). "The crystal structure of benzene iododichloride". Acta Crystallogr. 6: 88–92. doi: 10.1107/S0365110X53000193 .
  3. H. J. Lucas and E. R. Kennedy (1942). "Iodobenzene dichloride". Organic Syntheses . 22: 69. doi:10.15227/orgsyn.022.0069.
  4. Zanka, Atsuhiko; Takeuchi, Hiroki; Kubota, Ariyoshi (1998). "Large-Scale Preparation of Iodobenzene Dichloride and Efficient Monochlorination of 4-Aminoacetophenone". Organic Process Research & Development . 2 (4): 270. doi:10.1021/op980024e.
  5. Zhao, Xue-Fei; Zhang, Chi (2007). "Iodobenzene Dichloride as a Stoichiometric Oxidant for the Conversion of Alcohols into Carbonyl Compounds; Two Facile Methods for Its Preparation". Synthesis . 2007 (4): 551. doi:10.1055/s-2007-965889.
  6. H. J. Lucas, E. R. Kennedy, and M. W. Formo (1942). "Iodosobenzene". Organic Syntheses . 22: 70. doi:10.15227/orgsyn.022.0070.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. M. W. Formo, John R. Johnson (1942). "Iodoxybenzene: B. Hypochlorite oxidation of iodobenzene dichloride". Organic Syntheses . 22: 72. doi:10.15227/orgsyn.022.0072.
  8. Michael E. Jung and Michael H. Parker (1997). "Synthesis of Several Naturally Occurring Polyhalogenated Monoterpenes of the Halomon Class". Journal of Organic Chemistry . 62 (21): 7094–7095. doi:10.1021/jo971371. PMID   11671809.

Further reading