Irofulven

Last updated
Irofulven
Irofulven.svg
Names
Preferred IUPAC name
(6′R)-6′-Hydroxy-3′-(hydroxymethyl)-2′,4′,6′-trimethylspiro[cyclopropane-1,5′-inden]-7′(6′H)-one
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C15H18O3/c1-8-6-10-12(11(8)7-16)9(2)15(4-5-15)14(3,18)13(10)17/h6,16,18H,4-5,7H2,1-3H3/t14-/m0/s1 Yes check.svgY
    Key: NICJCIQSJJKZAH-AWEZNQCLSA-N Yes check.svgY
  • InChI=1/C15H18O3/c1-8-6-10-12(11(8)7-16)9(2)15(4-5-15)14(3,18)13(10)17/h6,16,18H,4-5,7H2,1-3H3/t14-/m0/s1
    Key: NICJCIQSJJKZAH-AWEZNQCLBL
  • O=C1C/3=C/C(=C(C\3=C(/C2([C@]1(O)C)CC2)C)CO)C
Properties
C15H18O3
Molar mass 246.302 g/mol
Density 1.285 g/mL
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Irofulven or 6-hydroxymethylacylfulvene (also known as HMAF of MGI-114) is an experimental antitumor agent. [1] [2] It belongs to the family of drugs called alkylating agents.

Contents

It inhibits the DNA replication of cells deficient in nucleotide excision repair in culture. [3] [4]

Irofulven is an analogue of illudin S, a sesquiterpene toxin found in the Jack 'o' Lantern mushroom ( Omphalotus illudens ). The compound was originally synthesized by Dr. Trevor McMorris and found to have anticancer properties in mice by Dr. Michael J Kelner. [5]

Licensing and Clinical development

The drug was created and patented by the University of California, San Diego (UCSD), and subsequently licensed to the US biotech company MGI Pharma. Eisai acquired MGI in 2007, and the license was returned to UCSD, which then re-licensed the potential cancer drug to Lantern Pharma in 2015. Soon after, the drug was again sub-licensed to Oncology Venture, now known as Allarty Therapeutics A/S.

The drug has undergone a number of clinical trials, mostly for late-stage tumors as well as ovarian and prostate cancers, usually preceded by treatment with carboplatin and paclitaxel. A multi-center phase 2 trial involving patients with Recurrent or Persistent Ovarian Epithelial or Primary Peritoneal Cancer was well tolerated but irofluven demonstrated modest activity as a single agent. [6] Previously, a European Phase I study in combination with cisplatin showed substantial evidence for anti-tumor activity. In that study, irofulven showed rapid elimination and high interpatient variability. Platinum and irofulven pharmacokinetics did not suggest drug-drug interactions. [7]

Despite modest successes demonstrating limited efficacy for late stage tumors that were statistically not significant enough to support broader clinical trials, Allarty decided to stratify patient populations with companion diagnostic tools (biomarkers) to predict outcomes, and thus select that sub-set of patients through DRP (Drug Response Predictors), for whom treatment with irofulven would be most effective. Allarty initiated two Phase 2 drug-screening studies at two Danish University Hospitals for late-stage prostate cancers, wherein 300 patients have been included to be screened, of which only 27 are to be selected for the Phase 2 trial. [8] In 2021, Lantern Pharma reacquired the rights to the development and commercialization of irofulven. At that time, 9 of the intended 27 patients had been a part of the study which saw an increase of median overall survival from 2.6 to 5.4 months. [9] The study is estimated to be complete in late 2024. [10]

Since it was first synthesized, research with irofulven has decreased dramatically over the past decade with only one clinical trial currently being run. [10] A study published in 2021 showed cells with nucleotide excision repair (NER) deficiencies were susceptible to iroflaven while cells without these NER deficiencies were not overly affected. The deficiency of tumors in NER was seen as a potential identifier for patient candidates. [4] Since this discovery, research has increased with researchers calling irofulven a "previously abandoned" anticancer drug. [11] [4] [12]

Synthesis

A synthesis of irofulven has been reported. [13]

Irofulven.png

Related Research Articles

A cancer vaccine, or oncovaccine, is a vaccine that either treats existing cancer or prevents development of cancer. Vaccines that treat existing cancer are known as therapeutic cancer vaccines or tumor antigen vaccines. Some of the vaccines are "autologous", being prepared from samples taken from the patient, and are specific to that patient.

<i>Omphalotus illudens</i> Species of fungus

Omphalotus illudens, commonly known as the eastern jack-o'lantern mushroom, is a large, orange mushroom that is often found in clumps on decaying stumps, buried roots, or at the base of hardwood trees in eastern North America. Its gills often exhibit a weak green bioluminescence when fresh. This green glow has been mentioned in several journal articles, which state that the phenomenon can persist up to 40–50 hours after the mushroom has been picked. It is believed that this display serves to attract insects to the mushroom's gills during nighttime, which can then distribute its spores across a wider area.

<span class="mw-page-title-main">Nucleotide excision repair</span> DNA repair mechanism

Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals, radiation and other mutagens. Three excision repair pathways exist to repair single stranded DNA damage: Nucleotide excision repair (NER), base excision repair (BER), and DNA mismatch repair (MMR). While the BER pathway can recognize specific non-bulky lesions in DNA, it can correct only damaged bases that are removed by specific glycosylases. Similarly, the MMR pathway only targets mismatched Watson-Crick base pairs.

<span class="mw-page-title-main">Trabectedin</span> Chemical compound

Trabectedin, sold under the brand name Yondelis, is an antitumor chemotherapy medication for the treatment of advanced soft-tissue sarcoma and ovarian cancer.

<span class="mw-page-title-main">Satraplatin</span> Chemical compound

Satraplatin is a platinum-based antineoplastic agent that was under investigation as a treatment of patients with advanced prostate cancer who have failed previous chemotherapy. It has not yet received approval from the U.S. Food and Drug Administration. First mentioned in the medical literature in 1993, satraplatin is the first orally active platinum-based chemotherapeutic drug; other available platinum analogues—cisplatin, carboplatin, and oxaliplatin—must be given intravenously.

<span class="mw-page-title-main">ERCC1</span> Protein-coding gene in the species Homo sapiens

DNA excision repair protein ERCC-1 is a protein that in humans is encoded by the ERCC1 gene. Together with ERCC4, ERCC1 forms the ERCC1-XPF enzyme complex that participates in DNA repair and DNA recombination.

<span class="mw-page-title-main">TOP1</span> DNA topoisomerase enzyme

DNA topoisomerase 1 is an enzyme that in humans is encoded by the TOP1 gene. It is a DNA topoisomerase, an enzyme that catalyzes the transient breaking and rejoining of a single strand of DNA.

<span class="mw-page-title-main">ERCC6</span> Gene of the species Homo sapiens

DNA excision repair protein ERCC-6 is a protein that in humans is encoded by the ERCC6 gene. The ERCC6 gene is located on the long arm of chromosome 10 at position 11.23.

<span class="mw-page-title-main">APPBP1</span> Protein-coding gene in the species Homo sapiens

NEDD8-activating enzyme E1 regulatory subunit is a protein that in humans is encoded by the NAE1 gene.

Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death or death of an organism. Although the foregoing explanation is wider than this, it is common when referring to synthetic lethality to mean the situation arising by virtue of a combination of deficiencies of two or more genes leading to cell death, whereas a deficiency of only one of these genes does not. In a synthetic lethal genetic screen, it is necessary to begin with a mutation that does not result in cell death, although the effect of that mutation could result in a differing phenotype, and then systematically test other mutations at additional loci to determine which, in combination with the first mutation, causes cell death arising by way of deficiency or abolition of expression.

<span class="mw-page-title-main">Romidepsin</span> Chemical compound

Romidepsin, sold under the brand name Istodax, is an anticancer agent used in cutaneous T-cell lymphoma (CTCL) and other peripheral T-cell lymphomas (PTCLs). Romidepsin is a natural product obtained from the bacterium Chromobacterium violaceum, and works by blocking enzymes known as histone deacetylases, thus inducing apoptosis. It is sometimes referred to as depsipeptide, after the class of molecules to which it belongs. Romidepsin is branded and owned by Gloucester Pharmaceuticals, a part of Celgene.

<span class="mw-page-title-main">Apatinib</span> Chemical compound

Apatinib, also known as rivoceranib, is a tyrosine kinase inhibitor that selectively inhibits the vascular endothelial growth factor receptor-2. It is an orally bioavailable, small molecule agent which is thought to inhibit angiogenesis in cancer cells; specifically, apatinib inhibits VEGF-mediated endothelial cell migration and proliferation thus blocking new blood vessel formation in tumor tissue. This agent also mildly inhibits c-Kit and c-SRC tyrosine kinases.

<span class="mw-page-title-main">Veliparib</span> Chemical compound

Veliparib (ABT-888) is a potential anti-cancer drug acting as a PARP inhibitor. It kills cancer cells by blocking a protein called PARP, thereby preventing the repair of DNA or genetic damage in cancer cells and possibly making them more susceptible to anticancer treatments. Veliparib may make whole brain radiation treatment work more effectively against brain metastases from NSCLC. It has been shown to potentiate the effects of many chemotherapeutics, and as such has been part of many combination clinical trials.

<span class="mw-page-title-main">Cancer treatment</span> Overview of various treatment possibilities for cancer

Cancer treatments are a wide range of treatments available for the many different types of cancer, with each cancer type needing its own specific treatment. Treatments can include surgery, chemotherapy, radiation therapy, hormonal therapy, targeted therapy including small-molecule drugs or monoclonal antibodies, and PARP inhibitors such as olaparib. Other therapies include hyperthermia, immunotherapy, photodynamic therapy, and stem-cell therapy. Most commonly cancer treatment involves a series of separate therapies such as chemotherapy before surgery. Angiogenesis inhibitors are sometimes used to enhance the effects of immunotherapies.

<span class="mw-page-title-main">Filanesib</span> Chemical compound

Filanesib is a kinesin spindle protein (KIF11) inhibitor which has recently been proposed as a cancer treatment, specifically for multiple myeloma.

<span class="mw-page-title-main">Titanocene Y</span> Organotitanium compound

Titanocene Y also known as bis[(p-methoxybenzyl)cyclopentadienyl]titanium(IV) dichloride or dichloridobis(η5-(p-methoxybenzyl)cyclopentadienyl)titanium is an organotitanium compound that has been investigated for use as an anticancer drug.

<span class="mw-page-title-main">Triciribine</span> Chemical compound

Triciribine is a cancer drug which was first synthesized in the 1970s and studied clinically in the 1980s and 1990s without success. Following the discovery in the early 2000s that the drug would be effective against tumours with hyperactivated Akt, it is now again under consideration in a variety of cancers. As PTX-200, the drug is currently in two early stage clinical trials in breast cancer and ovarian cancer being conducted by the small molecule drug development company Prescient Therapeutics.

<span class="mw-page-title-main">Pevonedistat</span> Chemical compound

Pevonedistat (MLN4924) is a selective NEDD8 inhibitor. It is being investigated as a cancer treatment, e.g. for mantle cell lymphoma (MCL).

Metronomic therapy is a new type of chemotherapy in which anti-cancer drugs are administered in a lower dose than the maximum tolerated dose repetitively over a long period to treat cancers with fewer side effects. Metronomic therapy is shown to affect both tumor microenvironment and tumor cells to achieve its therapeutic effects. Metronomic therapy is also cost-effective as a lower dose is used compared to conventional chemotherapy. The use of metronomic therapy has been extensively investigated and can be advantageous in selected group of patients. Yet, more clinical trials are necessary to generalize the method.

<span class="mw-page-title-main">Lurbinectedin</span> Chemical compound

Lurbinectedin, sold under the brand name Zepzelca, is a medication used for the treatment of small cell lung cancer.

References

  1. Escargueil, A. E.; Poindessous, V.; Soares, D. G.; Sarasin, A.; Cook, P. R.; Larsen, A. K. (April 2008). "Influence of Irofulven, a Transcription-Coupled Repair-Specific Antitumor Agent, on RNA Polymerase Activity, Stability and Dynamics in Living Mammalian Cells". Journal of Cell Science. 121 (Pt 8): 1275–1283. doi:10.1242/jcs.023259. PMID   18388315. S2CID   9282024.
  2. Kelner, M. J.; McMorris, T. C.; Estes, L.; Wang, W.; Samson, K. M.; Taetle, R. (1996). "Efficacy of HMAF (MGI-114) in the MV522 Metastatic Lung Carcinoma Xenograft Model Nonresponsive to Traditional Anticancer Agents". Investigational New Drugs. 14 (2): 161–167. doi:10.1007/BF00210787. PMID   8913837. S2CID   8439510.
  3. Wang, Y.; Wiltshire, T.; Senft, J.; Reed, E.; Wang, W. (February 2007). "Irofulven Induces Replication-Dependent CHK2 Activation Related to p53 Status". Biochemical Pharmacology . 73 (4): 469–480. doi:10.1016/j.bcp.2006.10.023. PMC   1800887 . PMID   17118344.
  4. 1 2 3 Börcsök, Judit; Sztupinszki, Zsofia; Bekele, Raie; Gao, Sizhi P.; Diossy, Miklos; Samant, Amruta S.; Dillon, Kasia M.; Tisza, Viktoria; Spisák, Sándor; Rusz, Orsolya; Csabai, Istvan; Pappot, Helle; Frazier, Zoë J.; Konieczkowski, David J.; Liu, David (2021-04-01). "Identification of a Synthetic Lethal Relationship between Nucleotide Excision Repair Deficiency and Irofulven Sensitivity in Urothelial Cancer". Clinical Cancer Research. 27 (7): 2011–2022. doi:10.1158/1078-0432.CCR-20-3316. ISSN   1557-3265. PMC   8026514 . PMID   33208343.
  5. MacDonald, J. R.; Muscoplat, C. C.; Dexter, D. L.; Mangold, G. L.; Chen, S. F.; Kelner, M. J.; McMorris, T. C.; Von Hoff, D. D. (1997). "Preclinical Antitumor Activity of 6-hydroxymethylacylfulvene, a Semisynthetic Derivative of the Mushroom Toxin Illudin S" (PDF). Cancer Research. 57 (2): 279–283. PMID   9000568.
  6. Schilder RJ et al. (2010 Oct). "A phase II evaluation of Irofulven (IND#55804, NSC#683863) as second-line treatment of recurrent or persistent intermediately platinum-sensitive ovarian or primary peritoneal cancer: A Gynecologic Oncology Group trial". J Gynecol Cancer. 20(7):1137-41. PMC   3079178.
  7. Hilger W et al.(July 2006),A phase I and pharmacokinetic study of irofulven and cisplatin administered in a 30-min infusion every two weeks to patients with advanced solid tumors. Invest New Drugs. 24(4):311-9. doi : 10.1007/s10637-005-5055-6.
  8. Both Danish sites now open in the Screening Study of prostate cancer patients for OV's Irofulven Pharmacy Choice - Pharmaceutical News. Retrieved 12 May 2017.
  9. "Lantern Pharma Reacquires Rights to Phase 2 Clinical Trial in Metastatic Prostate Cancer and Global Development & Commercialization of Irofulven (LP-100) from Allarity Therapeutics A/S". Lantern Pharma Inc. 2021-07-27. Retrieved 2024-07-26.
  10. 1 2 "ClinicalTrials.gov". clinicaltrials.gov. Retrieved 2024-01-26.
  11. Prosz, Aurel; Duan, Haohui; Tisza, Viktoria; Sahgal, Pranshu; Topka, Sabine; Klus, Gregory T.; Börcsök, Judit; Sztupinszki, Zsofia; Hanlon, Timothy; Diossy, Miklos; Vizkeleti, Laura; Stormoen, Dag Rune; Csabai, Istvan; Pappot, Helle; Vijai, Joseph (2023-11-23). "Nucleotide excision repair deficiency is a targetable therapeutic vulnerability in clear cell renal cell carcinoma". Scientific Reports. 13 (1): 20567. Bibcode:2023NatSR..1320567P. doi:10.1038/s41598-023-47946-4. ISSN   2045-2322. PMC   10667362 . PMID   37996508.
  12. "Repairing DNA Damage in Cancer Cells | Memorial Sloan Kettering Cancer Center". www.mskcc.org. 2021-01-11. Retrieved 2024-01-26.
  13. McMorris, T. C.; Staake, M. D.; Kelner, M. J. (2004). "Synthesis and Biological Activity of Enantiomers of Antitumor Irofulven". The Journal of Organic Chemistry. 69 (3): 619–23. doi:10.1021/jo035084j. PMID   14750783.