Ironomycin

Last updated
Ironomycin
Ironomycin.svg
Names
IUPAC name
(2R)-2-[(2R,5S,6R)-6-{(2S,3S,4S,6R)-6-[(2S,5S,7R,9S,10S,12R,15R)-2-[(2R,5R,6S)-5-Ethyl-5-hydroxy-6-methyltetrahydro-2H-pyran-2-yl]-2,10,12-trimethyl-15-(2-propyn-1-ylamino)-1,6,8-trioxadispiro[4.1.5.3 ]pentadec-13-en-9-yl]-3-hydroxy-4-methyl-5-oxo-2-octanyl}-5-methyltetrahydro-2H-pyran-2-yl]butanoic acid
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
  • InChI=1S/C45H73NO10/c1-12-24-46-35-18-21-44(56-45(35)23-22-42(11,55-45)36-19-20-43(51,15-4)31(10)52-36)28(7)25-27(6)40(54-44)33(14-3)38(48)29(8)37(47)30(9)39-26(5)16-17-34(53-39)32(13-2)41(49)50/h1,18,21,26-37,39-40,46-47,51H,13-17,19-20,22-25H2,2-11H3,(H,49,50)/t26-,27-,28+,29-,30-,31-,32+,33-,34+,35+,36+,37+,39+,40-,42-,43+,44-,45-/m0/s1
    Key: CPVCFIJOMZZLDG-LIAGKXCRSA-N
  • CC[C@H]([C@H]1CC[C@H](C)[C@H]([C@H]([C@H](O)[C@H](C)C([C@@H]([C@H]([C@@H](C)C[C@H]2C)O[C@@]2(C=C[C@H]3NCC#C)O[C@]43CC[C@@](C)([C@H]5CC[C@](O)(CC)[C@H](C)O5)O4)CC)=O)C)O1)C(O)=O
Properties
C45H73NO10
Molar mass 788.076 g·mol−1
Pharmacology
QP51AH01 ( WHO )
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Ironomycin is a derivative of salinomycin and potent small molecule against persister cancer stem cells, that is under preclinical evaluation by SideROS for the treatment of cancer. [1] Ironomycin was shown to induce ferroptosis in breast cancer cell lines and its mechanism of action involves the targeting of lysosomal iron. [2]

Contents

Pre-clinical research

Ironomycin kills breast cancer stem cells in mice, and is more potent in vitro and in vivo than its parent anti-bacterial natural product salinomycin. Ironomycin and to a lesser extend salinomycin targeted cancer stem cells responsible for metastasis and relapse. [3]

The mechanism of action by which ironomycin and salinomycin kill cancer stem cells involves lysosomal iron sequestration, leading to the production of reactive oxygen species, lysosome membrane permeabilization and ferroptosis in breast cancer. [3] [4] While mesenchymal breast cancer cells are vulnerable to ferroptosis, ironomycin and salinomycin can trigger cell death independently of ferroptosis in other cancer cell types.

These candidate drugs abolished the capacity of HMLER CD24low to form colonies at low concentrations and ironomycin prevented these cells from developing tumorsphere in suspension, a well-established characteristic of cancer stem cells, at a low dose (ie. 30 nM).  This effect on cancer stem cells have been shown in vivo where ironomycin decreased tumour-seeding capacity of tumour cells (breast PDX), more efficiently that salinomycin and Docetaxel. CD44 mediating iron endocytosis prevails in the mesenchymal state of cancer cells, and iron operates as a metal catalyst to demethylate repressive histone (H3K9) that govern the expression of mesenchymal genes. [5]

The ability of ironomycin to kill both cancer stem cells and drug-resistant cancer cells (persister) may provide a therapeutic advantage in treating cancer. [6] Ironomycin is the preclinical development pipeline of the biotech company SideROS for the treatment of drug resistance cancers such as acute myeloid leukemia, triple negative breast cancer, pancreatic cancer and non-hodgkin lymphoma.

Synthesis

A team from ICSN has developed the chemical synthesis of salinomycin analogs, including ironomycin, which are more potent than salinomycin. Ironomycin is synthesized in two steps from salinomycin sodium salt: (1) a chemoselective allylic oxidation and (2) a chemo- and diastereoselective reductive amination at C20 leading to the alkyne derivative ironomycin.

See also

Related Research Articles

<span class="mw-page-title-main">Lysosome</span> Cell membrane organelle

A lysosome is a single membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that digest many kinds of biomolecules. A lysosome has a specific composition, of both its membrane proteins and its lumenal proteins. The lumen's pH (~4.5–5.0) is optimal for the enzymes involved in hydrolysis, analogous to the activity of the stomach. Besides degradation of polymers, the lysosome is involved in cell processes of secretion, plasma membrane repair, apoptosis, cell signaling, and energy metabolism.

<span class="mw-page-title-main">Receptor-mediated endocytosis</span> Process by which cells absorb materials

Receptor-mediated endocytosis (RME), also called clathrin-mediated endocytosis, is a process by which cells absorb metabolites, hormones, proteins – and in some cases viruses – by the inward budding of the plasma membrane (invagination). This process forms vesicles containing the absorbed substances and is strictly mediated by receptors on the surface of the cell. Only the receptor-specific substances can enter the cell through this process.

<span class="mw-page-title-main">Cancer stem cell</span> Cancer cells with features of normal cells

Cancer stem cells (CSCs) are cancer cells that possess characteristics associated with normal stem cells, specifically the ability to give rise to all cell types found in a particular cancer sample. CSCs are therefore tumorigenic (tumor-forming), perhaps in contrast to other non-tumorigenic cancer cells. CSCs may generate tumors through the stem cell processes of self-renewal and differentiation into multiple cell types. Such cells are hypothesized to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors. Therefore, development of specific therapies targeted at CSCs holds hope for improvement of survival and quality of life of cancer patients, especially for patients with metastatic disease.

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion, and gain migratory and invasive properties to become mesenchymal stem cells; these are multipotent stromal cells that can differentiate into a variety of cell types. EMT is essential for numerous developmental processes including mesoderm formation and neural tube formation. EMT has also been shown to occur in wound healing, in organ fibrosis and in the initiation of metastasis in cancer progression.

<span class="mw-page-title-main">Human iron metabolism</span> Iron metabolism in the body

Human iron metabolism is the set of chemical reactions that maintain human homeostasis of iron at the systemic and cellular level. Iron is both necessary to the body and potentially toxic. Controlling iron levels in the body is a critically important part of many aspects of human health and disease. Hematologists have been especially interested in systemic iron metabolism, because iron is essential for red blood cells, where most of the human body's iron is contained. Understanding iron metabolism is also important for understanding diseases of iron overload, such as hereditary hemochromatosis, and iron deficiency, such as iron-deficiency anemia.

<span class="mw-page-title-main">CD44</span> Cell-surface glycoprotein

The CD44 antigen is a cell-surface glycoprotein involved in cell–cell interactions, cell adhesion and migration. In humans, the CD44 antigen is encoded by the CD44 gene on chromosome 11. CD44 has been referred to as HCAM, Pgp-1, Hermes antigen, lymphocyte homing receptor, ECM-III, and HUTCH-1.

<span class="mw-page-title-main">Oleocanthal</span> Chemical compound

Oleocanthal is a phenylethanoid, or a type of natural phenolic compound found in extra-virgin olive oil. It appears to be responsible for the burning sensation that occurs in the back of the throat when consuming such oil. Oleocanthal is a tyrosol ester and its chemical structure is related to oleuropein, also found in olive oil.

<span class="mw-page-title-main">Bafilomycin</span> Chemical compound

The bafilomycins are a family of macrolide antibiotics produced from a variety of Streptomycetes. Their chemical structure is defined by a 16-membered lactone ring scaffold. Bafilomycins exhibit a wide range of biological activity, including anti-tumor, anti-parasitic, immunosuppressant and anti-fungal activity. The most used bafilomycin is bafilomycin A1, a potent inhibitor of cellular autophagy. Bafilomycins have also been found to act as ionophores, transporting potassium K+ across biological membranes and leading to mitochondrial damage and cell death.

<span class="mw-page-title-main">LAPTM4B</span> Protein-coding gene in the species Homo sapiens

Lysosomal-associated transmembrane protein 4B is a protein that in humans is encoded by the LAPTM4B gene.

<span class="mw-page-title-main">Eribulin</span> Pharmaceutical drug

Eribulin, sold under the brand name Halaven among others, is an anti-cancer medication used to treat breast cancer and liposarcoma.

<span class="mw-page-title-main">Salinomycin</span> Chemical compound

Salinomycin is an antibacterial and coccidiostat ionophore therapeutic drug.

Folate targeting is a method utilized in biotechnology for drug delivery purposes. This Trojan Horse process, which was created by Drs. Christopher P. Leamon and Philip S. Low, involves the attachment of the vitamin, folate, to a molecule/drug to form a "folate conjugate". Based on the natural high affinity of folate for the folate receptor protein (FR), which is commonly expressed on the surface of many human cancers, folate-drug conjugates also bind tightly to the FR and trigger cellular uptake via endocytosis. Molecules as diverse as small radiodiagnostic imaging agents to large DNA plasmid formulations have successfully been delivered inside FR-positive cells and tissues.

Immunogenic cell death is any type of cell death eliciting an immune response. Both accidental cell death and regulated cell death can result in immune response. Immunogenic cell death contrasts to forms of cell death that do not elicit any response or even mediate immune tolerance.

Oxytosis/ferroptosis is a type of programmed cell death dependent on iron and characterized by the accumulation of lipid peroxides, and is genetically and biochemically distinct from other forms of regulated cell death such as apoptosis. Oxytosis/ferroptosis is initiated by the failure of the glutathione-dependent antioxidant defenses, resulting in unchecked lipid peroxidation and eventual cell death. Lipophilic antioxidants and iron chelators can prevent ferroptotic cell death. Although the connection between iron and lipid peroxidation has been appreciated for years, it was not until 2012 that Brent Stockwell and Scott J. Dixon coined the term ferroptosis and described several of its key features. Pamela Maher and David Schubert discovered the process in 2001 and called it oxytosis. While they did not describe the involvement of iron at the time, oxytosis and ferroptosis are today thought to be the same cell death mechanism.

<span class="mw-page-title-main">Titanocene Y</span> Organotitanium compound

Titanocene Y also known as bis[(p-methoxybenzyl)cyclopentadienyl]titanium(IV) dichloride or dichloridobis(η5-(p-methoxybenzyl)cyclopentadienyl)titanium is an organotitanium compound that has been investigated for use as an anticancer drug.

Translational glycobiology or applied glycobiology is the branch of glycobiology and glycochemistry that focuses on developing new pharmaceuticals through glycomics and glycoengineering. Although research in this field presents many difficulties, translational glycobiology presents applications with therapeutic glycoconjugates, with treating various bone diseases, and developing therapeutic cancer vaccines and other targeted therapies. Some mechanisms of action include using the glycan for drug targeting, engineering protein glycosylation for better efficacy, and glycans as drugs themselves.

A cancer-associated fibroblast (CAF) is a cell type within the tumor microenvironment that promotes tumorigenic features by initiating the remodelling of the extracellular matrix or by secreting cytokines. CAFs are a complex and abundant cell type within the tumour microenvironment; the number cannot decrease, as they are unable to undergo apoptosis.

Breast cancer is the most prevalent type of cancer among women globally, with 685,000 deaths recorded worldwide in 2020. The most commonly used treatment methods for breast cancer include surgery, radiotherapy and chemotherapy. Some of these treated patients experience disease relapse and metastasis. The aggressive progression and recurrence of this disease has been attributed the presence of a subset of tumor cells known as breast cancer stem cells (BCSCs). These cells possess the abilities of self-renewal and tumor initiation, allowing them to be drivers of metastases and tumor growth. The microenvironment in which these cells reside is filled with residential inflammatory cells that provide the needed signaling cues for BCSC-mediated self-renewal and survival. The production of cytokines allows these cells to escape from the primary tumor and travel through the circulation to distant organs, commencing the process of metastasis. Due to their significant role in driving disease progression, BCSCs represent a new target by which to treat the tumor at the source of metastasis.

<span class="mw-page-title-main">Bisantrene</span> Chemical compound

Bisantrene is an anthracenyl bishydrazone with anthracycline-like antineoplastic activity and an antimetabolite. Bisantrene intercalates with and disrupts the configuration of DNA, resulting in DNA single-strand breaks, DNA-protein crosslinking, and inhibition of DNA replication. This agent is similar to doxorubicin in chemotherapeutic activity, but unlike anthracyclines like doxorubicin, it exhibits little cardiotoxicity.

MDA-MB-231 is a human breast cancer cell line isolated at M D Anderson in 1973 that is used in therapeutic research, especially in the context of triple negative breast cancer.

References

  1. "Ironomycin Mechanism of Action". SideROS.
  2. Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H, AlQudsy LH, Shang P (July 2020). "Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs". Cancer Letters. 483: 127–136. doi:10.1016/j.canlet.2020.02.015. PMID   32067993. S2CID   211159035.
  3. 1 2 Mai TT, Hamaï A, Hienzsch A, Cañeque T, Müller S, Wicinski J, et al. (October 2017). "Salinomycin kills cancer stem cells by sequestering iron in lysosomes". Nature Chemistry. 9 (10): 1025–1033. Bibcode:2017NatCh...9.1025M. doi:10.1038/nchem.2778. PMC   5890907 . PMID   28937680.
  4. Versini A, Colombeau L, Hienzsch A, Gaillet C, Retailleau P, Debieu S, et al. (June 2020). "Salinomycin Derivatives Kill Breast Cancer Stem Cells by Lysosomal Iron Targeting" (PDF). Chemistry: A European Journal. 26 (33): 7416–7424. doi:10.1002/chem.202000335. PMID   32083773. S2CID   211231337.
  5. Müller S, Sindikubwabo F, Cañeque T, Lafon A, Versini A, Lombard B, et al. (October 2020). "CD44 regulates epigenetic plasticity by mediating iron endocytosis". Nature Chemistry. 12 (10): 929–938. Bibcode:2020NatCh..12..929M. doi:10.1038/s41557-020-0513-5. PMC   7612580 . PMID   32747755. S2CID   220949068.
  6. Hamaï A, Cañeque T, Müller S, Mai TT, Hienzsch A, Ginestier C, et al. (August 2017). "An iron hand over cancer stem cells". Autophagy. 13 (8): 1465–1466. doi:10.1080/15548627.2017.1327104. PMC   5584845 . PMID   28613094.