JHU-083

Last updated
JHU-083
JHU-083 structure.png
Identifiers
  • Ethyl (2S)-2-[[(2S)-2-amino-4-methylpentanoyl]amino]-6-diazo-5-oxohexanoate
CAS Number
PubChem CID
ChemSpider
ChEBI
ChEMBL
Chemical and physical data
Formula C14H24N4O4
Molar mass 312.370 g·mol−1
3D model (JSmol)
  • CCOC(=O)[C@H](CCC(=O)C=[N+]=[N-])NC(=O)[C@H](CC(C)C)N
  • InChI=1S/C14H24N4O4/c1-4-22-14(21)12(6-5-10(19)8-17-16)18-13(20)11(15)7-9(2)3/h8-9,11-12H,4-7,15H2,1-3H3,(H,18,20)/t11-,12-/m0/s1
  • Key:YZRCHOFKIPHQBW-RYUDHWBXSA-N

JHU-083 is an experimental drug which acts as a glutaminase inhibitor. It is a prodrug which is cleaved in vivo to the active form 6-diazo-5-oxo-L-norleucine. It has been researched for the treatment of various neurological conditions such as depression, Alzheimer's disease, and cerebral malaria, [1] [2] [3] as well as multiple sclerosis, [4] atherosclerosis, [5] hepatitis, [6] and some forms of cancer in which it was found to target senescent cells. [7] [8] [9] [10]

Related Research Articles

<span class="mw-page-title-main">Glutamine</span> Chemical compound

Glutamine is an α-amino acid that is used in the biosynthesis of proteins. Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide. It is classified as a charge-neutral, polar amino acid. It is non-essential and conditionally essential in humans, meaning the body can usually synthesize sufficient amounts of it, but in some instances of stress, the body's demand for glutamine increases, and glutamine must be obtained from the diet. It is encoded by the codons CAA and CAG. It is named after glutamic acid, which in turn is named after its discovery in cereal proteins, gluten.

<span class="mw-page-title-main">Oligodendrocyte</span> Neural cell type

Oligodendrocytes, also known as oligodendroglia, are a type of neuroglia whose main functions are to provide support and insulation to axons within the central nervous system (CNS) of jawed vertebrates. Their function is similar to that of Schwann cells, which perform the same task in the peripheral nervous system (PNS). Oligodendrocytes accomplish this by forming the myelin sheath around axons. Unlike Schwann cells, a single oligodendrocyte can extend its processes to cover around 50 axons, with each axon being wrapped in approximately 1 μm of myelin sheath. Furthermore, an oligodendrocyte can provide myelin segments for multiple adjacent axons.

<span class="mw-page-title-main">Neuroprotection</span> Relative preservation of neurons

Neuroprotection refers to the relative preservation of neuronal structure and/or function. In the case of an ongoing insult the relative preservation of neuronal integrity implies a reduction in the rate of neuronal loss over time, which can be expressed as a differential equation.

<span class="mw-page-title-main">Targeted therapy</span> Type of therapy

Targeted therapy or molecularly targeted therapy is one of the major modalities of medical treatment (pharmacotherapy) for cancer, others being hormonal therapy and cytotoxic chemotherapy. As a form of molecular medicine, targeted therapy blocks the growth of cancer cells by interfering with specific targeted molecules needed for carcinogenesis and tumor growth, rather than by simply interfering with all rapidly dividing cells. Because most agents for targeted therapy are biopharmaceuticals, the term biologic therapy is sometimes synonymous with targeted therapy when used in the context of cancer therapy. However, the modalities can be combined; antibody-drug conjugates combine biologic and cytotoxic mechanisms into one targeted therapy.

<i>Plasmodium berghei</i> Single celled parasite, rodent malaria

Plasmodium berghei is a single-celled parasite causing rodent malaria. It is in the Plasmodium subgenus Vinckeia.

<span class="mw-page-title-main">Apolipoprotein E</span> Cholesterol-transporting protein most notably implicated in Alzheimers disease

Apolipoprotein E (Apo-E) is a protein involved in the metabolism of fats in the body of mammals. A subtype is implicated in Alzheimer's disease and cardiovascular diseases. It is encoded in humans by the gene APOE.

<span class="mw-page-title-main">WIN 55,212-2</span> Chemical compound

WIN 55,212-2 is a chemical described as an aminoalkylindole derivative, which produces effects similar to those of cannabinoids such as tetrahydrocannabinol (THC) but has an entirely different chemical structure.

<span class="mw-page-title-main">Monoclonal antibody therapy</span> Form of immunotherapy

Monoclonal antibodies (mAbs) have varied therapeutic uses. It is possible to create a mAb that binds specifically to almost any extracellular target, such as cell surface proteins and cytokines. They can be used to render their target ineffective, to induce a specific cell signal, to cause the immune system to attack specific cells, or to bring a drug to a specific cell type.

The biochemistry of Alzheimer's disease, the most common cause of dementia, is not yet very well understood. Alzheimer's disease (AD) has been identified as a proteopathy: a protein misfolding disease due to the accumulation of abnormally folded amyloid beta (Aβ) protein in the brain. Amyloid beta is a short peptide that is an abnormal proteolytic byproduct of the transmembrane protein amyloid-beta precursor protein (APP), whose function is unclear but thought to be involved in neuronal development. The presenilins are components of proteolytic complex involved in APP processing and degradation.

<span class="mw-page-title-main">Glutaminase</span> A mitochondrial enzyme that catalyzes the breakdown of glutamine

Glutaminase is an amidohydrolase enzyme that generates glutamate from glutamine. Glutaminase has tissue-specific isoenzymes. Glutaminase has an important role in glial cells.

<span class="mw-page-title-main">Cannabinoid receptor 1</span> Mammalian protein found in humans

Cannabinoid receptor 1 (CB1), is a G protein-coupled cannabinoid receptor that in humans is encoded by the CNR1 gene. The human CB1 receptor is expressed in the peripheral nervous system and central nervous system. It is activated by endogenous cannabinoids called endocannabinoids, a group of retrograde neurotransmitters that include lipids, such as anandamide and 2-arachidonoylglycerol (2-AG); plant phytocannabinoids, such as docosatetraenoylethanolamide found in wild daga, the compound THC which is an active constituent of the psychoactive drug cannabis; and synthetic analogs of THC. CB1 is antagonized by the phytocannabinoid tetrahydrocannabivarin (THCV).

Glutaminolysis (glutamine + -lysis) is a series of biochemical reactions by which the amino acid glutamine is lysed to glutamate, aspartate, CO2, pyruvate, lactate, alanine and citrate.

<span class="mw-page-title-main">Quinolinic acid</span> Dicarboxylic acid with pyridine backbone

Quinolinic acid, also known as pyridine-2,3-dicarboxylic acid, is a dicarboxylic acid with a pyridine backbone. It is a colorless solid. It is the biosynthetic precursor to niacin.

<span class="mw-page-title-main">Alzheimer type II astrocyte</span> Suspected pathological cell type in the brain

The Alzheimer type II astrocyte is thought to be a pathological type of cell in the brain; however, its exact pathology remains unknown. Like other astrocytes, it is a non-neuronal glial cell. It's mainly seen in diseases that cause increased levels of ammonia (hyperammonemia), such as chronic liver disease and Wilson's disease.

<span class="mw-page-title-main">Alzheimer's disease</span> Progressive neurodegenerative disease

Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens, and is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems with language, disorientation, mood swings, loss of motivation, self-neglect, and behavioral issues. As a person's condition declines, they often withdraw from family and society. Gradually, bodily functions are lost, ultimately leading to death. Although the speed of progression can vary, the average life expectancy following diagnosis is three to twelve years.

6-Diazo-5-oxo-<small>L</small>-norleucine Chemical compound

6-Diazo-5-oxo-L-norleucine (DON) is a glutamine antagonist, which was isolated originally from Streptomyces in a sample of Peruvian soil. This diazo compound is biosynthesized from lysine by three enzymes in bacteria. It is one of the most famous non-proteinogenic amino acid and was characterized in 1956 by Henry W Dion et al., who suggested a possible use in cancer therapy. This antitumoral efficacy was confirmed in different animal models. DON was tested as chemotherapeutic agent in different clinical studies, but was never approved. In 2019, DON was shown to kill tumor cells while reversing disease symptoms and improve overall survival in late-stage experimental glioblastoma in mice, when combined with calorie-restricted ketogenic diet.

<span class="mw-page-title-main">PET-MRI</span>

Positron emission tomography–magnetic resonance imaging (PET–MRI) is a hybrid imaging technology that incorporates magnetic resonance imaging (MRI) soft tissue morphological imaging and positron emission tomography (PET) functional imaging.

<span class="mw-page-title-main">Julie C. Price</span> American physicist and professor of radiology

Julie C. Price is an American medical physicist and professor of radiology at Massachusetts General Hospital (MGH), Harvard Medical School (HMS), as well as the director of PET Pharmacokinetic Modeling at the Athinoula A. Martinos Center at MGH. Price is a leader in the study and application of quantitative positron emission tomography (PET) methods. Prior to this, Price worked with Pittsburgh colleagues to lead the first fully quantitative pharmacokinetic evaluations of 11C-labeled Pittsburgh compound-B (PIB), one of the most widely used PET ligands for imaging amyloid beta plaques. As a principal investigator at MGH, Price continues work to validate novel PET methods for imaging biological markers of health and disease in studies of aging and neurodegeneration, including studies of glucose metabolism, protein expression, neurotransmitter system function, and tau and amyloid beta plaque burden.

<span class="mw-page-title-main">HC-067047</span> Chemical compound

HC-067047 is a drug which acts as a potent and selective antagonist for the TRPV4 receptor. It has been used to investigate the role of TRPV4 receptors in a number of areas, such as regulation of blood pressure, bladder function and some forms of pain, as well as neurological functions.

<span class="mw-page-title-main">Neurovascular unit</span>

The neurovascular unit (NVU) comprises the components of the brain that collectively regulate cerebral blood flow in order to deliver the requisite nutrients to activated neurons. The NVU addresses the brain's unique dilemma of having high energy demands yet low energy storage capacity. In order to function properly, the brain must receive substrates for energy metabolism–mainly glucose–in specific areas, quantities, and times. Neurons do not have the same ability as, for example, muscle cells, which can use up their energy reserves and refill them later; therefore, cerebral metabolism must be driven in the moment. The neurovascular unit facilitates this ad hoc delivery and, thus, ensures that neuronal activity can continue seamlessly.

References

  1. Zhu X, Nedelcovych MT, Thomas AG, Hasegawa Y, Moreno-Megui A, Coomer W, et al. (March 2019). "JHU-083 selectively blocks glutaminase activity in brain CD11b+ cells and prevents depression-associated behaviors induced by chronic social defeat stress". Neuropsychopharmacology. 44 (4): 683–694. doi:10.1038/s41386-018-0177-7. PMC   6372721 . PMID   30127344.
  2. Hollinger KR, Zhu X, Khoury ES, Thomas AG, Liaw K, Tallon C, et al. (2020). "Glutamine Antagonist JHU-083 Normalizes Aberrant Hippocampal Glutaminase Activity and Improves Cognition in APOE4 Mice". Journal of Alzheimer's Disease. 77 (1): 437–447. doi:10.3233/JAD-190588. PMC   7678030 . PMID   32675407.
  3. Riggle BA, Sinharay S, Schreiber-Stainthorp W, Munasinghe JP, Maric D, Prchalova E, et al. (December 2018). "MRI demonstrates glutamine antagonist-mediated reversal of cerebral malaria pathology in mice". Proceedings of the National Academy of Sciences of the United States of America. 115 (51): E12024–E12033. Bibcode:2018PNAS..11512024R. doi: 10.1073/pnas.1812909115 . PMC   6304986 . PMID   30514812.
  4. Hollinger KR, Smith MD, Kirby LA, Prchalova E, Alt J, Rais R, et al. (November 2019). "Glutamine antagonism attenuates physical and cognitive deficits in a model of MS". Neurology. 6 (6): e609. doi:10.1212/NXI.0000000000000609. PMC   6745721 . PMID   31467038.
  5. Park HY, Kim MJ, Lee S, Jin J, Lee S, Kim JG, et al. (May 2021). "Inhibitory Effect of a Glutamine Antagonist on Proliferation and Migration of VSMCs via Simultaneous Attenuation of Glycolysis and Oxidative Phosphorylation". International Journal of Molecular Sciences. 22 (11): 5602. doi: 10.3390/ijms22115602 . PMC   8198131 . PMID   34070527.
  6. Tu H, Yin X, Wen J, Wu W, Zhai B, Li J, Jiang H (December 2022). "Glutaminase 1 blockade alleviates nonalcoholic steatohepatitis via promoting proline metabolism". Biochemical and Biophysical Research Communications. 634: 1–9. doi:10.1016/j.bbrc.2022.10.007. PMID   36223657. S2CID   252733914.
  7. Hanaford AR, Alt J, Rais R, Wang SZ, Kaur H, Thorek DL, et al. (October 2019). "Orally bioavailable glutamine antagonist prodrug JHU-083 penetrates mouse brain and suppresses the growth of MYC-driven medulloblastoma". Translational Oncology. 12 (10): 1314–1322. doi:10.1016/j.tranon.2019.05.013. PMC   6657308 . PMID   31340195.
  8. Yamashita AS, da Costa Rosa M, Stumpo V, Rais R, Slusher BS, Riggins GJ (2021). "The glutamine antagonist prodrug JHU-083 slows malignant glioma growth and disrupts mTOR signaling". Neuro-Oncology Advances. 3 (1): vdaa149. doi:10.1093/noajnl/vdaa149. PMC   7920530 . PMID   33681764.
  9. Huang M, Xiong D, Pan J, Zhang Q, Sei S, Shoemaker RH, et al. (September 2022). "Targeting Glutamine Metabolism to Enhance Immunoprevention of EGFR-Driven Lung Cancer". Advanced Science. 9 (26): e2105885. doi:10.1002/advs.202105885. PMC   9475521 . PMID   35861366.
  10. Kaushik AK, Tarangelo A, Boroughs LK, Ragavan M, Zhang Y, Wu CY, et al. (December 2022). "In vivo characterization of glutamine metabolism identifies therapeutic targets in clear cell renal cell carcinoma". Science Advances. 8 (50): eabp8293. Bibcode:2022SciA....8P8293K. doi:10.1126/sciadv.abp8293. PMC   9757752 . PMID   36525494.