James A. Simmons

Last updated

James A. Simmons is a pioneer in the field of biosonar. His research includes behavioral and neurophysiological studies of sound processing in the echolocating bat. From the time he began graduate research in the late 1960s to the present, he has been in the forefront of bat echolocation research. Simmons was honored as a fellow of the Acoustical Society of America (ASA) in 1996 and of the American Association for the Advancement of Science in 2000. He was awarded the ASA's second Silver Medal in Animal Bioacoustics in 2005. [1] His current position is Professor in the Department of Neuroscience, Brown University.

Contents

Education

Simmons obtained his bachelor's degree from Lafayette College in 1965 with a double major in Psychology and Chemistry. He then earned a master's degree in 1968 and a Ph.D. in Psychology in 1969 from Princeton University. Simmons's graduate research involved studies of echolocation in bats, under the mentorship of E. Glen Wever, one of the giants in physiological acoustics. At that time, acceptance of the processes underlying spatial perception by echolocation was not universal, and one of the exciting moments of his graduate training came when a skeptical Nobel Laureate, Georg von Békésy, on one of his periodic visits to Wever's lab, came to see the behaving bats in "Building B. The demonstration that Simmons conducted not only convinced Békésy that bats echolocated but that they also use echo delay to estimate target distance. It was not until some years later that Simmons found out that this was a set-up engineered by Wever and Donald Griffin, who was then at the Rockefeller University, to convince Békésy about the bat's extraordinary use of echolocation to determine target range. Simmons's dissertation was entitled "Perception of target distance by echolocating bats. After receiving his Ph.D., Simmons remained at Princeton University as a National Institutes of Health postdoctoral trainee for two years.

Research

Simmons continued his research on bat echolocation after he moved to Washington University in St. Louis, Missouri in 1971, as an assistant professor in the Neural Science Program that was housed in the Psychology Department. Between 1980 and 1984, he taught and conducted research as a professor in the Department of Biology and Institute of Neuroscience, University of Oregon in Eugene, Oregon. In 1984, Simmons moved to Brown University in Providence, Rhode Island, where his wife Andrea had been hired as an assistant professor in the Psychology Department. Both are now professors in the Neuroscience and Psychology Departments at Brown University, respectively.

Simmons developed methods for conducting psychophysical studies of sonar processing by bats, and researchers around the world have adopted these methods to address a wide range of research questions. Simmons was the first to use electronically delayed playbacks of the bat's echolocation signals to simulate target echoes for the study of perception in bats. He used such "phantom" target echoes to measure, for the first time, target range difference discrimination thresholds of echolocating bats. Simmons studied sonar ranging performance in bats by determining the minimum difference in echo delay that an echolocating animal can discriminate. With this paradigm, Simmons estimated that bats can discriminate a range difference of approximately 1 centimeter, corresponding to an echo delay difference of approximately 60 microseconds.

Simmons continued to study sonar ranging performance in echolocating bats, and in the late 1970s, he introduced a new behavioral task, requiring the bat to discriminate a sonar target returning echoes at a fixed delay from one returning echoes that alternated between two delays. In this experiment, Simmons found that the echolocating bat can discriminate a jitter in echo delay in the submicrosecond range, corresponding to a change in target distance of less than 0.1 mm. This result, originally published in 1979 in Science, "Perception of echo phase information in bat sonar," demonstrated astonishing ranging accuracy by the echolocating bat. Many researchers in the field challenged the report, because they asserted it was not biologically possible for the bat's sonar system to discriminate such small time differences at ultrasonic frequencies. Simmons continues to work on this problem to explore biological processes that could support sensitivity to small changes in echo delay.

Through behavioral experiments, Simmons demonstrated time-varying gain in the sonar receiver of echolocating bats. The hearing sensitivity of the big brown bat decreases before each sonar pulse is emitted and then recovers in a logarithmic fashion to compensate for the two-way transmission loss of sonar returns, thereby maintaining a constant echo sensation level over a distance of about 1.5 meters. This is functionally important to the bat, as it stabilizes the bat's estimate of echo arrival time, its cue for target distance.

In addition to Simmons's contributions to our understanding of perception by sonar, he has conducted neurophysiological experiments in echolocating bats. One of his manuscripts published with co-authors Albert Feng and Shelley Kick in Science [2] had a profound impact on the study of the neurophysiology of echolocating bats. This paper describes the response properties of auditory neurons in the bat central nervous system that show facilitated responses to pairs of sounds separated by a limited range of biologically relevant delays. These neurons exhibit the response characteristic known as "echo delay-tuning or "range-tuning, which could provide the neural substrate for target distance coding. The published report on this population of delay-tuned neurons by Simmons and colleagues preceded the first papers by Nobuo Suga and his group, who have since published widely on this topic.

In the past five years, Simmons has used new methods for making thermal infrared video recordings of bats flying in natural situations. He developed a stereo video viewing system that lets him observe bats in 3D and listen to their sounds while they behave. These studies have led to new discoveries that challenge our understanding of echolocation behavior in bats.

Awards and honors

Scientific Publications

Simmons has published extensively, with over 95 journal articles in prestigious journals including 8 in Science, 2 in Nature, and 20 in the Journal of the Acoustical Society of America (JASA).

Related Research Articles

Echolocation is the use of sound as a form of navigation.

<span class="mw-page-title-main">Animal echolocation</span> Method used by several animal species to determine location using sound

Echolocation, also called bio sonar, is a biological active sonar used by several animal groups, both in the air and underwater. Echolocating animals emit calls and listen to the echoes of those calls that return from various objects near them. They use these echoes to locate and identify the objects. Echolocation is used for navigation, foraging, and hunting prey.

<span class="mw-page-title-main">Microbat</span> Suborder of mammals

Microbats constitute the suborder Microchiroptera within the order Chiroptera (bats). Bats have long been differentiated into Megachiroptera (megabats) and Microchiroptera, based on their size, the use of echolocation by the Microchiroptera and other features; molecular evidence suggests a somewhat different subdivision, as the microbats have been shown to be a paraphyletic group.

Human echolocation is the ability of humans to detect objects in their environment by sensing echoes from those objects, by actively creating sounds: for example, by tapping their canes, lightly stomping their foot, snapping their fingers, or making clicking noises with their mouths. People trained to orient by echolocation can interpret the sound waves reflected by nearby objects, accurately identifying their location and size.

<span class="mw-page-title-main">Bioacoustics</span> Study of sound relating to biology

Bioacoustics is a cross-disciplinary science that combines biology and acoustics. Usually it refers to the investigation of sound production, dispersion and reception in animals. This involves neurophysiological and anatomical basis of sound production and detection, and relation of acoustic signals to the medium they disperse through. The findings provide clues about the evolution of acoustic mechanisms, and from that, the evolution of animals that employ them.

Sound localization is a listener's ability to identify the location or origin of a detected sound in direction and distance.

<span class="mw-page-title-main">Brown long-eared bat</span> Species of bat

The brown long-eared bat or common long-eared bat is a small Eurasian insectivorous bat. It has distinctive ears, long and with a distinctive fold. It is extremely similar to the much rarer grey long-eared bat which was only validated as a distinct species in the 1960s. An adult brown long-eared bat has a body length of 4.5–4.8 cm, a tail of 4.1–4.6 cm, and a forearm length of 4–4.2 cm. The ears are 3.3–3.9 cm in length, and readily distinguish the long-eared bats from most other bat species. They are relatively slow flyers compared to other bat species.

<span class="mw-page-title-main">Tragus (ear)</span> Eminence of the external ear

The tragus is a small pointed eminence of the external ear, situated in front of the concha, and projecting backward over the meatus. It also is the name of hair growing at the entrance of the ear. Its name comes the Ancient Greek tragos, meaning 'goat', and is descriptive of its general covering on its under surface with a tuft of hair, resembling a goat's beard. The nearby antitragus projects forwards and upwards.

<span class="mw-page-title-main">Egyptian fruit bat</span> Species of bat

The Egyptian fruit bat or Egyptian rousette is a species of megabat that is found in Africa, the Middle East, the Mediterranean, and the Indian subcontinent. It is one of three Rousettus species with an African-Malagasy range, though the only species of its genus found on continental Africa. The common ancestor of the three species colonized the region in the late Pliocene or early Pleistocene. The species is traditionally divided into six subspecies. It is considered a medium-sized megabat, with adults weighing 80–170 g (2.8–6.0 oz) and possessing wingspans of approximately 60 cm (24 in). Individuals are dark brown or grayish brown, with their undersides paler than their backs.

<span class="mw-page-title-main">Acoustic location</span> Use of reflected sound waves to locate objects

Acoustic location is a method of determining the position of an object or sound source by using sound waves. Location can take place in gases, liquids, and in solids.

Whitlow W. L. Au was a leading expert in bioacoustics specializing in biosonar of odontocetes. He is author of the widely known book The Sonar of Dolphins (1993) and, with Mardi Hastings, Principles of Marine Bioacoustics (2008). Au was honored as a Fellow of the Acoustical Society of America in 1990 and awarded the ASA's first Silver Medal in Animal Bioacoustics in 1998. He was graduate advisor to MacArthur Fellow Kelly Benoit-Bird, who credits Au for discovering how sophisticated dolphin sonar is, developing dolphin-inspired machine sonars to separate different species of fish with the goal of protecting sensitive species, and for making numerous contributions to the description of Humpback whale song, which helped protect these whales from ship noise and ship traffic.

Bat detectors are the most common way to identify the species of flying bats. There are distinct types of call which can indicate the genus, and variations in pattern and frequency which indicate the species. For readers not familiar with the different types of bat detector, there is further information below and elsewhere.

Active sensory systems are sensory receptors that are activated by probing the environment with self-generated energy. Examples include echolocation of bats and dolphins and insect antennae. Using self-generated energy allows more control over signal intensity, direction, timing and spectral characteristics. By contrast, passive sensory systems involve activation by ambient energy. For example, human vision relies on using light from the environment.

<i>Onychonycteris</i> Extinct genus of bats

Onychonycteris is the more primitive of the three oldest bats known from complete skeletons, having lived in the area that is current day Wyoming during the Eocene period, 52.5 million years ago.

<span class="mw-page-title-main">Bat</span> Order of flying mammals

Bats are flying mammals of the order Chiroptera. With their forelimbs adapted as wings, they are the only mammals capable of true and sustained flight. Bats are more agile in flight than most birds, flying with their very long spread-out digits covered with a thin membrane or patagium. The smallest bat, and arguably the smallest extant mammal, is Kitti's hog-nosed bat, which is 29–34 millimetres in length, 150 mm (6 in) across the wings and 2–2.6 g in mass. The largest bats are the flying foxes, with the giant golden-crowned flying fox reaching a weight of 1.6 kg and having a wingspan of 1.7 m.

Ultrasound avoidance is an escape or avoidance reflex displayed by certain animal species that are preyed upon by echolocating predators. Ultrasound avoidance is known for several groups of insects that have independently evolved mechanisms for ultrasonic hearing. Insects have evolved a variety of ultrasound-sensitive ears based upon a vibrating tympanic membrane tuned to sense the bat's echolocating calls. The ultrasonic hearing is coupled to a motor response that causes evasion of the bat during flight.

When an echolocating bat approaches a target, its outgoing sounds return as echoes, which are Doppler shifted upward in frequency. In certain species of bats, which produce constant frequency (CF) echolocation calls, the bats compensate for the Doppler shift by changing their call frequency as they change speed towards a target. This keeps the returning echo in the same frequency range of the normal echolocation call. This dynamic frequency modulation is called the Doppler shift compensation (DSC), and was discovered by Hans Schnitzler in 1968.

Echolocation systems of animals, like human radar systems, are susceptible to interference known as echolocation jamming or sonar jamming. Jamming occurs when non-target sounds interfere with target echoes. Jamming can be purposeful or inadvertent, and can be caused by the echolocation system itself, other echolocating animals, prey, or humans. Echolocating animals have evolved to minimize jamming, however; echolocation avoidance behaviors are not always successful.

Ernest Glen Wever was an American experimental psychologist known for his elucidation of hearing in vertebrates, ranging from the biomechanical functioning of the cochlea to the neural coding of sound and the evolutionary biology of hearing.

Annemarie Surlykke was a Danish physiologist. She contributed significantly to bioacoustic research, in particular in the fields of insect hearing and acoustic communication, bat echolocation and insect-bat interactions. Graduated from University of Southern Denmark, employments at University of Tübingen and Aarhus University. From 1987 associate professor at University of Southern Denmark, full professor in 2011.

References

  1. "Silver Medal in Animal Bioacoustics–James A. Simmons, Recipient". The Journal of the Acoustical Society of America. 118 (3): 1986–1989. 2005-09-01. Bibcode:2005ASAJ..118.1986.. doi:10.1121/1.4785647. ISSN   0001-4966.
  2. Feng, A., J. Simmons, and S. Kick (1971). "Echo detection and target-ranging neurons in the auditory system of the bat, Eptesicus fuscus." Science 4368:645-648.