James W. Mayer

Last updated
James W. Mayer
BornApril 24, 1930
Chicago, IL
DiedJune 14, 2013
CitizenshipAmerican
Alma mater Purdue University
Scientific career
Fields Applied Physics
Electrical Engineering
Institutions Hughes Research Laboratories
California Institute of Technology
Cornell University
Arizona State University

James W. Mayer (died 14 June 2013 [1] ) was an applied physicist, who was active in the field of ion-solid interactions. His accomplishments played a critical role in the development of the solid-state particle detector; the field of ion beam analysis of materials, and the application of ion implantation to semiconductors.

Contents

Career

He gained a PhD degree in physics from Purdue University and worked at Hughes Research Laboratories before moving in 1967 to the California Institute of Technology as professor of electrical engineering. He joined Cornell University as professor of materials science and engineering in 1980, and was made director of the microscience and technology program in 1989. Moving to Arizona State University in 1992, he served as director of the Center for Solid State Science before being appointed regents professor (1994) and P.V. Galvin Professor of Science & Engineering (1997). [2]

Semiconductor spectrometer

It was known in the 1950s that semiconductor p-n junctions responded to alpha particles by producing voltage pulses. However, the common method of determining the energy spectrum of energetic particles at that time relied on the use of very large and cumbersome magnetic spectrometers and ionization chambers. It was at this time in the mid to late 1950s that James Mayer demonstrated the first semiconductor, broad area, spectrometer which measured the energies of the particles rather than just detecting their impact. Mayer's discovery was that the ionization of Si and Ge by charged particles (as well as X-rays) could be used, in a small, compact device, to collect the electrons and holes that were created and thereby measure the energy of the incident particles.

The concept of the surface-barrier particle detector that Mayer first developed served as a cornerstone for the rapid development of numerous research areas. Because of its small size and compactness, the surface-barrier particle detector almost immediately started replacing many of the cumbersome detectors in use at that time, i.e. magnetic spectrometers and ionization chambers, revolutionizing low energy nuclear structure physics almost overnight. These semiconductor spectrometers led to the practical development of many modern materials analysis techniques that have wide spread use today, such as X-ray fluorescence and ion beam analysis of materials, including Rutherford backscattering, ion channeling, and X-ray spectrometry based on alpha particle sources.

Particle detectors

Mayer played a pivotal role in the application of particle detectors to the fledgling field of ion beam analysis (often referred to as Rutherford Backscattering Spectrometry or RBS) and the development of this field into a major analytical tool. He went on to define many of the advances in thin film science of the 1970s and 80s, including thin film reactions and kinetics (especially of metal silicides), solid phase regrowth of semiconductors, ion beam mixing for the formation of metastable alloys, implantation disorder and impurity location in semiconductors, and the study of thin dielectric films.

In the rapid surge of industrial interest in ion implantation of Si, starting around 1965, Mayer and his coworkers used ion channeling to understand defect production during dopant ion implantation into Si, the recovery of this damage, and the activation of dopants during subsequent anneals, thereby making ion implantation a viable tool for the production of integrated circuits. In 1967, he was chosen by Academic Press to author the first monograph on Ion Implantation of Semiconductors and by 1970 ion implantation first began being used in the commercial production of integrated circuits.

Papers and books

His work resulted in more than 750 papers and 12 books which have garnered in excess of 17,000 citations (ISI listed him as one of the 1000 most-cited Contemporary Scientists between 1965 and 1978). He mentored 40 PhD students and numerous postdoctoral scholars during his academic career at Caltech, Cornell and Arizona State University.

Awards and honors

He was elected a Fellow of the American Physical Society in 1972. [3]

He was elected to the National Academy of Engineering in 1984, in the Materials section. [4]

Related Research Articles

<span class="mw-page-title-main">Ion implantation</span> Use of ions to cause chemical changes

Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the physical, chemical, or electrical properties of the target. Ion implantation is used in semiconductor device fabrication and in metal finishing, as well as in materials science research. The ions can alter the elemental composition of the target if they stop and remain in the target. Ion implantation also causes chemical and physical changes when the ions impinge on the target at high energy. The crystal structure of the target can be damaged or even destroyed by the energetic collision cascades, and ions of sufficiently high energy can cause nuclear transmutation.

Particle radiation is the radiation of energy by means of fast-moving subatomic particles. Particle radiation is referred to as a particle beam if the particles are all moving in the same direction, similar to a light beam.

<span class="mw-page-title-main">X-ray fluorescence</span> Emission of secondary X-rays from a material excited by high-energy X-rays

X-ray fluorescence (XRF) is the emission of characteristic "secondary" X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. The phenomenon is widely used for elemental analysis and chemical analysis, particularly in the investigation of metals, glass, ceramics and building materials, and for research in geochemistry, forensic science, archaeology and art objects such as paintings.

Spectrometry may refer to:

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

<span class="mw-page-title-main">Ion source</span> Device that creates charged atoms and molecules (ions)

An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines.

<span class="mw-page-title-main">Secondary ion mass spectrometry</span> Surface chemical analysis and imaging method

Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. The mass/charge ratios of these secondary ions are measured with a mass spectrometer to determine the elemental, isotopic, or molecular composition of the surface to a depth of 1 to 2 nm. Due to the large variation in ionization probabilities among elements sputtered from different materials, comparison against well-calibrated standards is necessary to achieve accurate quantitative results. SIMS is the most sensitive surface analysis technique, with elemental detection limits ranging from parts per million to parts per billion.

A semiconductor detector in ionizing radiation detection physics is a device that uses a semiconductor to measure the effect of incident charged particles or photons.

A microprobe is an instrument that applies a stable and well-focused beam of charged particles to a sample.

<span class="mw-page-title-main">Ion beam</span> Beam of charged atoms (ions)

An ion beam is a type of charged particle beam consisting of ions. Ion beams have many uses in electronics manufacturing and other industries. A variety of ion beam sources exists, some derived from the mercury vapor thrusters developed by NASA in the 1960s. The most common ion beams are of singly-charged ions.

Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.

Elastic recoil detection analysis (ERDA), also referred to as forward recoil scattering, is an ion beam analysis technique in materials science to obtain elemental concentration depth profiles in thin films. This technique is known by several different names. These names are listed below. In the technique of ERDA, an energetic ion beam is directed at a sample to be characterized and there is an elastic nuclear interaction between the ions of beam and the atoms of the target sample. Such interactions are commonly of Coulomb nature. Depending on the kinetics of the ions, cross section area, and the loss of energy of the ions in the matter, ERDA helps determine the quantification of the elemental analysis. It also provides information about the depth profile of the sample.

<span class="mw-page-title-main">Neutron detection</span>

Neutron detection is the effective detection of neutrons entering a well-positioned detector. There are two key aspects to effective neutron detection: hardware and software. Detection hardware refers to the kind of neutron detector used and to the electronics used in the detection setup. Further, the hardware setup also defines key experimental parameters, such as source-detector distance, solid angle and detector shielding. Detection software consists of analysis tools that perform tasks such as graphical analysis to measure the number and energies of neutrons striking the detector.

<span class="mw-page-title-main">Spark ionization</span> Ionization method to produce gas phase ions from a solid sample

Spark ionization is a method used to produce gas phase ions from a solid sample. The prepared solid sample is vaporized and partially ionized by an intermittent discharge or spark. This technique is primarily used in the field of mass spectrometry. When incorporated with a mass spectrometer the complete instrument is referred to as a spark ionization mass spectrometer or as a spark source mass spectrometer (SSMS).

<span class="mw-page-title-main">Time-of-flight mass spectrometry</span> Method of mass spectrometry

Time-of-flight mass spectrometry (TOFMS) is a method of mass spectrometry in which an ion's mass-to-charge ratio is determined by a time of flight measurement. Ions are accelerated by an electric field of known strength. This acceleration results in an ion having the same kinetic energy as any other ion that has the same charge. The velocity of the ion depends on the mass-to-charge ratio. The time that it subsequently takes for the ion to reach a detector at a known distance is measured. This time will depend on the velocity of the ion, and therefore is a measure of its mass-to-charge ratio. From this ratio and known experimental parameters, one can identify the ion.

Static secondary-ion mass spectrometry, or static SIMS is a secondary ion mass spectrometry technique for chemical analysis including elemental composition and chemical structure of the uppermost atomic or molecular layer of a solid which may be a metal, semiconductor or plastic with insignificant disturbance to its composition and structure. It is one of the two principal modes of operation of SIMS, which is the mass spectrometry of ionized particles emitted by a solid surface upon bombardment by energetic primary particles.

Rutherford backscattering spectrometry (RBS) is an analytical technique used in materials science. Sometimes referred to as high-energy ion scattering (HEIS) spectrometry, RBS is used to determine the structure and composition of materials by measuring the backscattering of a beam of high energy ions (typically protons or alpha particles) impinging on a sample.

Nuclear forensics is the investigation of nuclear materials to find evidence for the source, the trafficking, and the enrichment of the material. The material can be recovered from various sources including dust from the vicinity of a nuclear facility, or from the radioactive debris following a nuclear explosion.

<span class="mw-page-title-main">Igor Serafimovich Tashlykov</span> Soviet and Belarusian physicist

Igor Serafimovich Tashlykov was a Soviet and Belarusian physicist, who was awarded the Doctor of Physical and Mathematical Sciences degree (1989). He was a member of the Belarusian Physical Society (1995). He carried out research at the Research Institute of Applied Physical Problems (APP) of the Belarusian State University, the Belarusian State Technological University, the Maxim Tank Belarusian State Pedagogical University (BSPU).

References

  1. "James W. Mayer" in "Memorial Tributes: Volume 21" at NAP.edu.
  2. "In Memoriam: James W. Mayer". Cambridge University Press. Retrieved 14 July 2020.
  3. "APS Fellow Archive". APS. Retrieved 14 July 2020.
  4. "NAE Website - Members Directory". nae.edu. Retrieved 2016-11-30.