James William Peter Hirschfeld

Last updated

From left: Aart Blokhuis, James William Peter Hirschfeld, Dieter Jungnickel, and Joseph A. Thas, at the MFO, 2001 Blokhuis Hirschfeld Jungnickel Thas.jpg
From left: Aart Blokhuis, James William Peter Hirschfeld, Dieter Jungnickel, and Joseph A. Thas, at the MFO, 2001

James William Peter Hirschfeld (born 1940) is an Australian mathematician, resident in the United Kingdom, specializing in combinatorial geometry and the geometry of finite fields. He is an emeritus professor and Tutorial Fellow at the University of Sussex.

Contents

Hirschfeld received his doctorate in 1966 from the University of Edinburgh with thesis advisor William Leonard Edge and thesis The geometry of cubic surfaces, and Grace's extension of the double-six, over finite fields. [1]

To pursue further studies in finite geometry Hirschfeld went to University of Perugia and University of Rome with support from the Royal Society and Accademia nazionale dei Lincei. He edited Beniamino Segre's 100-page monograph "Introduction to Galois Geometries" (1967). [2]

In 1979 Hirschfeld published the first of a trilogy on Galois geometry, pegged at a level depending only on "the group theory and linear algebra taught in a first degree course, as well as a little projective geometry, and a very little algebraic geometry." When q is a prime power then there is a finite field GF(q) with q elements called a Galois field. A vector space over GF(q) of n + 1 dimensions produces an n-dimensional Galois geometry PG(n,q) with its subspaces: one-dimensional subspaces are the points of the Galois geometry and two-dimensional subspaces are the lines. Non-singular linear transformations of the vector space provide motions of PG(n,q). The first book (1979) covered PG(1,q) and PG(2,q). The second book addressed PG(3,q) and the third PG(n,q). Chapters are numbered sequentially through the trilogy: 14 in the first book, 15 to 21 in the second, and 22 to 27 in the third. Finite geometry has contributed to coding theory, such as algebraic geometry codes, so the field is supported by computer science. In the preface of the 1991 text Hirschfeld summarizes the status of Galois geometry, mentioning maximum distance separable code, mathematics journals publishing finite geometry, and conferences on combinatorics featuring Galois geometry. Colleague Joseph A. Thas is coauthor of General Galois Geometries on PG(n,q) where n ≥ 4.

Hirschfeld was cited as the ultimate editor of Design Theory (1986). [3]

In 2018 he received the 2016 Euler Medal. [4]

Selected publications

Related Research Articles

Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.

<span class="mw-page-title-main">Projective plane</span> Geometric concept of a 2D space with a "point at infinity" adjoined

In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point.

<span class="mw-page-title-main">General linear group</span> Group of n × n invertible matrices

In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group. The group is so named because the columns of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position.

<span class="mw-page-title-main">Projective space</span> Completion of the usual space with "points at infinity"

In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines.

<span class="mw-page-title-main">Finite geometry</span> Geometric system with a finite number of points

A finite geometry is any geometric system that has only a finite number of points. The familiar Euclidean geometry is not finite, because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite projective and affine spaces because of their regularity and simplicity. Other significant types of finite geometry are finite Möbius or inversive planes and Laguerre planes, which are examples of a general type called Benz planes, and their higher-dimensional analogs such as higher finite inversive geometries.

In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry.

In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. In other cases the dual of the dual – the double dual or bidual – is not necessarily identical to the original. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.

<span class="mw-page-title-main">Reductive group</span> Concept in mathematics

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.

In mathematics, a translation plane is a projective plane which admits a certain group of symmetries. Along with the Hughes planes and the Figueroa planes, translation planes are among the most well-studied of the known non-Desarguesian planes, and the vast majority of known non-Desarguesian planes are either translation planes, or can be obtained from a translation plane via successive iterations of dualization and/or derivation.

In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, some collineations are not homographies, but the fundamental theorem of projective geometry asserts that is not so in the case of real projective spaces of dimension at least two. Synonyms include projectivity, projective transformation, and projective collineation.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In algebraic geometry, a Schubert variety is a certain subvariety of a Grassmannian, of -dimensional subspaces of a vector space , usually with singular points. Like the Grassmannian, it is a kind of moduli space, whose elements satisfy conditions giving lower bounds to the dimensions of the intersections of its elements , with the elements of a specified complete flag. Here may be a vector space over an arbitrary field, but most commonly this taken to be either the real or the complex numbers.

In mathematics, the field with one element is a suggestive name for an object that should behave similarly to a finite field with a single element, if such a field could exist. This object is denoted F1, or, in a French–English pun, Fun. The name "field with one element" and the notation F1 are only suggestive, as there is no field with one element in classical abstract algebra. Instead, F1 refers to the idea that there should be a way to replace sets and operations, the traditional building blocks for abstract algebra, with other, more flexible objects. Many theories of F1 have been proposed, but it is not clear which, if any, of them give F1 all the desired properties. While there is still no field with a single element in these theories, there is a field-like object whose characteristic is one.

<span class="mw-page-title-main">Algebraic combinatorics</span> Area of combinatorics

Algebraic combinatorics is an area of mathematics that employs methods of abstract algebra, notably group theory and representation theory, in various combinatorial contexts and, conversely, applies combinatorial techniques to problems in algebra.

<span class="mw-page-title-main">Galois geometry</span> Branch of finite geometry

Galois geometry is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field. More narrowly, a Galois geometry may be defined as a projective space over a finite field.

Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.

In geometry, specifically projective geometry, a blocking set is a set of points in a projective plane that every line intersects and that does not contain an entire line. The concept can be generalized in several ways. Instead of talking about points and lines, one could deal with n-dimensional subspaces and m-dimensional subspaces, or even more generally, objects of type 1 and objects of type 2 when some concept of intersection makes sense for these objects. A second way to generalize would be to move into more abstract settings than projective geometry. One can define a blocking set of a hypergraph as a set that meets all edges of the hypergraph.

<span class="mw-page-title-main">Joseph A. Thas</span> Belgian mathematician

Joseph Adolphe François Thas is a Belgian mathematician, who works on combinatorics, incidence geometry and finite geometries.

Gábor Korchmáros is a Hungarian mathematician, who works on finite geometry.

A frequently studied problem in finite geometry is to identify ways in which an object can be covered by other simpler objects such as points, lines, and planes. In projective geometry, a specific instance of this problem that has numerous applications is determining whether, and how, a projective space can be covered by pairwise disjoint subspaces which have the same dimension; such a partition is called a spread. Specifically, a spread of a projective space , where is an integer and a division ring, is a set of -dimensional subspaces, for some such that every point of the space lies in exactly one of the elements of the spread.

References

  1. Hirschfeld, J. W. P. (1966). "Geometry of cubic surfaces, and Grace's extension of the double-six, over finite fields". Edinburgh Research Archive .
  2. Preface, page vii, Projective Geometries over Finite Fields
  3. Beth, Thomas; Jungnickel, Dieter; Lenz, Hanfried (1986). Design Theory. Cambridge: Cambridge University Press. p. 10.. 2nd ed. (1999) ISBN   978-0-521-44432-3.
  4. "Official Web Pages of the ICA". The Institute of Combinatorics and Its Applications.
  5. Sherk, Frank Arthur (1981). "Review of Projective geometries over finite fields by J. W. P. Hirschfeld". Bulletin of the American Mathematical Society. New Series. 4 (2): 213–215. doi: 10.1090/S0273-0979-1981-14887-4 .
  6. Hagedorn, Thomas (2 July 2008). "Review of Algebraic Curves over a Finite Field by J. W. P. Hirschfeld, G. Korchmáros, and F. Torres". MAA Reviews, Mathematical Association of America .