Kidston Solar Project

Last updated

Kidston Solar Farm
Kidston Solar Project
Country
  • Australia
Location
Coordinates 18°53′19″S144°08′21″E / 18.8886861°S 144.1390787°E / -18.8886861; 144.1390787
Owner(s)
Solar farm
Type
Power generation
Nameplate capacity
  • 50 MW
Capacity factor
  • 26.4 %
External links
Website www.genexpower.com.au/270mw-kidston-solar-project.html

Kidston Solar Project is a photovoltaic solar power station built on top of the former Kidston Gold Mine utilising the tailings storage facility in northern Queensland, Australia. The project consists of two solar farms, KS1 and KS2. The Kidston Solar Project is the first of four projects that comprise the Kidston Clean Energy Hub also occupying this area. A 250 megawatt (MW) hydro-pumped storage power generation project and a 150 MW wind farm make up the third and forth components. [1] The site is located close to an existing substation and transmission line. [1]

The Kidston Solar Project generates up to 145 Gigawatt hours of renewable electricity per year. [2] In total, there are 540,000 panels that makes up the project, manufactured by company First Solar Inc on a single axis tracking system. The photovoltaic panels are mounted on the tracking system which shifts the angle of the panels to follow the sun. [3]

Financial close was reached in February 2017 for KS1, with first energisation occurring in November 2017. It is now fully commissioned and operational, connected to the existing 132Kv transmission line powered by Ergon Energy and generating electricity into the NEM.

Construction was fully funded at $115M with construction activities for the project built on-time and on-budget via the project's EPC contractor, UGL. Financing was underpinned by the 20-year Revenue Support Deed with the Queensland Government for 100% of the energy generated from the Project, in addition to a $8.9M funding grant provided by the Australian Renewable Energy Agency. [2]

In April 2022, Kidston Solar Project was rated as the best-performing solar farm in Australia, with a capacity factor of 26.4%. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Electricity generation</span> Process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery to end users or its storage.

<span class="mw-page-title-main">Pumped-storage hydroelectricity</span> Electric energy storage system

Pumped-storage hydroelectricity (PSH), or pumped hydroelectric energy storage (PHES), is a type of hydroelectric energy storage used by electric power systems for load balancing. The method stores energy in the form of gravitational potential energy of water, pumped from a lower elevation reservoir to a higher elevation. Low-cost surplus off-peak electric power is typically used to run the pumps. During periods of high electrical demand, the stored water is released through turbines to produce electric power. Although the losses of the pumping process make the plant a net consumer of energy overall, the system increases revenue by selling more electricity during periods of peak demand, when electricity prices are highest. If the upper lake collects significant rainfall or is fed by a river then the plant may be a net energy producer in the manner of a traditional hydroelectric plant.

<span class="mw-page-title-main">Solar power by country</span>

Many countries and territories have installed significant solar power capacity into their electrical grids to supplement or provide an alternative to conventional energy sources. Solar power plants use one of two technologies:

<span class="mw-page-title-main">Solar power in Australia</span>

Solar power is a fast-growing industry in Australia. As of June 2023, Australia's over 3.52 million solar PV installations had a combined capacity of 32,095 MW photovoltaic (PV) solar power, of which at least 4,389 MW were installed in the preceding 12 months. In 2019, 59 solar PV projects with a combined capacity of 2,881 MW were either under construction, constructed or due to start construction having reached financial closure. Solar accounted for 12.4% of Australia's total electrical energy production in 2021.

<span class="mw-page-title-main">Solar power in Spain</span>

Spain is one of the first countries to deploy large-scale solar photovoltaics, and is the world leader in concentrated solar power (CSP) production.

<span class="mw-page-title-main">Renewable energy in Australia</span>

Renewable energy in Australia includes wind power, hydroelectricity, solar photovoltaics, heat pumps, geothermal, wave and solar thermal energy.

<span class="mw-page-title-main">Solar power in India</span>

Solar power is a fast developing industry in India. The country's solar installed capacity was 71.61 GWAC as of 31 August 2023. Solar power generation in India ranks fourth globally in 2021.

<span class="mw-page-title-main">Solar power in the United Kingdom</span>

Solar power represented a very small part of electricity production in the United Kingdom until the 2010s when it increased rapidly, thanks to feed-in tariff (FIT) subsidies and the falling cost of photovoltaic (PV) panels.

<span class="mw-page-title-main">Solar power</span> Conversion of energy from sunlight into electricity

Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Photovoltaic cells convert light into an electric current using the photovoltaic effect. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight to a hot spot, often to drive a steam turbine.

<span class="mw-page-title-main">Solar power in California</span>

Solar power has been growing rapidly in the U.S. state of California because of high insolation, community support, declining solar costs, and a renewable portfolio standard which requires that 60% of California's electricity come from renewable resources by 2030, with 100% by 2045. Much of this is expected to come from solar power via photovoltaic facilities or concentrated solar power facilities.

<span class="mw-page-title-main">Solar power in Hawaii</span> Overview of solar power in the U.S. state of Hawaii

The energy sector in Hawaii has rapidly adopted solar power due to the high costs of electricity, and good solar resources, and has one of the highest per capita rates of solar power in the United States. Hawaii's imported energy costs, mostly for imported petroleum and coal, are three to four times higher than the mainland, so Hawaii has motivation to become one of the highest users of solar energy. Hawaii was the first state in the United States to reach grid parity for photovoltaics. Its tropical location provides abundant ambient energy.

South Australia is a leader in utility-scale renewable energy generation, and also produces gas and uranium for electricity generation. Gas production is mostly concentrated in the Cooper Basin in the state's north-east. Gas is delivered from these fields by pipeline to users interstate and to Port Adelaide where it fuels three separate gas-fired power plants. Uranium is also mined in South Australia, though nuclear power generation is prohibited nationally. The Olympic Dam mine is the world's single largest known deposit of uranium and represents 30% of the world's total uranium resource. Many utility-scale wind farms and solar farms have been commissioned during the 21st century and geology with potential for geothermal energy has also been identified but is yet to be developed.

<span class="mw-page-title-main">Solar power in Florida</span> Overview of solar power in Florida, United States

Solar power in Florida has been increasing, as the cost of solar power systems using photovoltaics (PV) has decreased in recent years. Florida has low electricity costs compared with other states, which makes individual solar investment less attractive. Florida ranks ninth nationally in solar resource strength according to the National Renewable Energy Laboratory and tenth in solar generation by the Solar Energy Industries Association.

In 2022 Chile produced about 18% of its electricity from solar power, up from 7% in 2018. As of 2022, Chile produces the highest percentage of its electricity from solar in the world. At the end of 2021 Chile was ranked 22nd in the world in terms of installed solar energy.

<span class="mw-page-title-main">Renewable energy in Kenya</span>

Most of Kenya's electricity is generated by renewable energy sources. Access to reliable, affordable, and sustainable energy is one of the 17 main goals of the United Nations’ Sustainable Development Goals. Development of the energy sector is also critical to help Kenya achieve the goals in Kenya Vision 2030 to become a newly industrializing, middle-income country. With an installed power capacity of 2,819 MW, Kenya currently generates 826 MW hydroelectric power, 828 geothermal power, 749 MW thermal power, 331 MW wind power, and the rest from solar and biomass sources. Kenya is the largest geothermal energy producer in Africa and also has the largest wind farm on the continent. In March 2011, Kenya opened Africa's first carbon exchange to promote investments in renewable energy projects. Kenya has also been selected as a pilot country under the Scaling-Up Renewable Energy Programmes in Low Income Countries Programme to increase deployment of renewable energy solutions in low-income countries. Despite significant strides in renewable energy development, about a quarter of the Kenyan population still lacks access to electricity, necessitating policy changes to diversify the energy generation mix and promote public-private partnerships for financing renewable energy projects.

<span class="mw-page-title-main">Renewable energy in Taiwan</span>

Renewable energy in Taiwan contributed to 8.7% of national electricity generation as of end of 2013. The total installed capacity of renewable energy in Taiwan by the end of 2013 was 3.76 GW. As of 2020, the Taiwan government aims for a renewable share of 20% by 2025, with coal and gas providing the other 80%.

<span class="mw-page-title-main">Electricity sector in Australia</span>

The Australian electricity sector has been historically dominated by coal-fired power stations, but renewables are forming a rapidly growing fraction of supply.

The Beacon Solar Project is a photovoltaic power station in the northwestern Mojave Desert, near California City in eastern Kern County, California. Split into five phases, the combined Beacon solar facilities generate 250 MW of renewable energy for the Los Angeles Department of Water and Power (LADWP). The five phases of the project, fully completed in December 2017, include a total of 903,434 individual solar photovoltaic modules, mounted onto Nextracker single-axis tracking systems.

References

  1. 1 2 "Kidston solar project, Queensland, Australia". Power Technology. 4 October 2021. Retrieved 19 October 2023.
  2. 1 2 "50MW Kidston Solar Project (KS1)". Genex Power. Retrieved 23 November 2021.
  3. "Kidston Solar Project (Phase 1)". Arena. Archived from the original on 23 November 2021.
  4. Vorrath, Sophie (12 May 2022). "Graph of the Day: Australia's top performing solar and wind farms in April". Renew Economy. Retrieved 12 May 2022.