Kineococcus radiotolerans

Last updated

Kineococcus radiotolerans
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Kineosporiales
Family: Kineosporiaceae
Genus: Kineococcus
Species:
K. radiotolerans
Binomial name
Kineococcus radiotolerans
Phillips et al. 2002 [1]
Type strain
SRS30216T [2]
ATCC BAA-149T
DSM 14245T

Kineococcus radiotolerans is a radiation-resistant, [3] [4] motile, coccus-shaped, gram-positive bacterium. [1]

Contents

Related Research Articles

Extremophile Organisms capable of living in extreme environments

An extremophile is an organism that is able to live in extreme environments, i.e. environments that make survival challenging such as due to extreme temperature, radiation, salinity, or pH level.

Gram-positive bacteria Bacteria that give a positive result in the Gram stain test

In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall.

<i>Streptococcus pneumoniae</i> Species of bacterium

Streptococcus pneumoniae, or pneumococcus, is a Gram-positive, spherical bacteria, alpha-hemolytic or beta-hemolytic, aerotolerant anaerobic member of the genus Streptococcus. They are usually found in pairs (diplococci) and do not form spores and are non motile. As a significant human pathogenic bacterium S. pneumoniae was recognized as a major cause of pneumonia in the late 19th century, and is the subject of many humoral immunity studies.

The Thermomicrobia is a group of thermophilic green non-sulfur bacteria. Based on species Thermomicrobium roseum and Sphaerobacter thermophilus, this bacteria class has the following description:

<i>Bacillus subtilis</i> Catalase-positive bacterium

Bacillus subtilis, known also as the hay bacillus or grass bacillus, is a Gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus Bacillus, B. subtilis is rod-shaped, and can form a tough, protective endospore, allowing it to tolerate extreme environmental conditions. B. subtilis has historically been classified as an obligate aerobe, though evidence exists that it is a facultative anaerobe. B. subtilis is considered the best studied Gram-positive bacterium and a model organism to study bacterial chromosome replication and cell differentiation. It is one of the bacterial champions in secreted enzyme production and used on an industrial scale by biotechnology companies.

Two-empire system Biological classification system

The two-empire system was the top-level biological classification system in general use before the establishment of the three-domain system. It classified cellular life into Prokaryota and Eukaryota as either "empires" or "superkingdoms". When the three-domain system was introduced, some biologists preferred the two-superkingdom system, claiming that the three-domain system overemphasized the division between Archaea and Bacteria. However, given the current state of knowledge and the rapid progress in biological scientific advancement, especially due to genetic analyses, that view has all but vanished.

Radioresistance is the level of ionizing radiation that organisms are able to withstand.

Bacillus safensis is a Gram-positive, spore-forming, and rod bacterium, originally isolated from a spacecraft in Florida and California. B. safensis could have possibly been transported to the planet Mars on spacecraft Opportunity and Spirit in 2004. There are several known strains of this bacterium, all of which belong to the Bacillota phylum of Bacteria. This bacterium also belongs to the large, pervasive genus Bacillus. B. safensis is an aerobic chemoheterotroph and is highly resistant to salt and UV radiation. B. safensis affects plant growth, since it is a powerful plant hormone producer, and it also acts as a plant growth-promoting rhizobacteria, enhancing plant growth after root colonization. Strain B. safensis JPL-MERTA-8-2 is the only bacterial strain shown to grow noticeably faster in micro-gravity environments than on the Earth surface.

<i>Enterococcus faecalis</i> Species of bacterium

Enterococcus faecalis – formerly classified as part of the group D Streptococcus system – is a Gram-positive, commensal bacterium inhabiting the gastrointestinal tracts of humans. Like other species in the genus Enterococcus, E. faecalis is found in healthy humans and can be used as a probiotic. The probiotic strains such as Symbioflor1 and EF-2001 are characterized by the lack of specific genes related to drug resistance and pathogenesis. As an opportunistic pathogen, E. faecalis can cause life-threatening infections, especially in the nosocomial (hospital) environment, where the naturally high levels of antibiotic resistance found in E. faecalis contribute to its pathogenicity. E. faecalis has been frequently found in reinfected, root canal-treated teeth in prevalence values ranging from 30% to 90% of the cases. Re-infected root canal-treated teeth are about nine times more likely to harbor E. faecalis than cases of primary infections.

<i>Shigella flexneri</i> Species of bacterium

Shigella flexneri is a species of Gram-negative bacteria in the genus Shigella that can cause diarrhea in humans. Several different serogroups of Shigella are described; S. flexneri belongs to group B. S. flexneri infections can usually be treated with antibiotics, although some strains have become resistant. Less severe cases are not usually treated because they become more resistant in the future. Shigella are closely related to Escherichia coli, but can be differentiated from E.coli based on pathogenicity, physiology and serology.

<i>Burkholderia pseudomallei</i>

Burkholderia pseudomallei is a Gram-negative, bipolar, aerobic, motile rod-shaped bacterium. It is a soil-dwelling bacterium endemic in tropical and subtropical regions worldwide, particularly in Thailand and northern Australia. Recently, there has been an expansion of the affected regions due to significant natural disasters and it can now be found in Southern China, Hong Kong, and countries in America. Although it is mainly a soil-dwelling bacteria, a study performed by Apinya Pumpuang and others showed that Burkholderia pseudomallei survived in distilled water for 16 years, demonstrating that it is capable of living in water if a specific environment is provided. It is resistant to variety of harsh conditions including nutrient deficiency, extreme temperature or PH scale. It infects humans and other animals most commonly livestock such as goats, pigs, and sheep. It happens less frequently in other animals, but is possible for them to get infected and causes the disease melioidosis. It is also capable of infecting plants in a labatory setting.

Thermus thermophilus is a Gram-negative bacterium used in a range of biotechnological applications, including as a model organism for genetic manipulation, structural genomics, and systems biology. The bacterium is extremely thermophilic, with an optimal growth temperature of about 65 °C (149 °F). Thermus thermophilus was originally isolated from a thermal vent within a hot spring in Izu, Japan by Tairo Oshima and Kazutomo Imahori. The organism has also been found to be important in the degradation of organic materials in the thermogenic phase of composting. T. thermophilus is classified into several strains, of which HB8 and HB27 are the most commonly used in laboratory environments. Genome analyses of these strains were independently completed in 2004.

Bacteria Domain of micro-organisms

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria are vital in many stages of the nutrient cycle by recycling nutrients such as the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

<i>Acinetobacter baumannii</i> Species of bacterium

Acinetobacter baumannii is a typically short, almost round, rod-shaped (coccobacillus) Gram-negative bacterium. It is named after the bacteriologist Paul Baumann. It can be an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived (nosocomial) infection. While other species of the genus Acinetobacter are often found in soil samples, it is almost exclusively isolated from hospital environments. Although occasionally it has been found in environmental soil and water samples, its natural habitat is still not known.

<i>Xanthomonas</i> Genus of bacteria

Xanthomonas is a genus of bacteria, many of which cause plant diseases. There are at least 27 plant associated Xanthomonas spp., that all together infect at least 400 plant species. Different species typically have specific host and/or tissue range and colonization strategies.

Klebsiella aerogenes, previously known as Enterobacter aerogenes, is a Gram-negative, oxidase negative, catalase positive, citrate positive, indole negative, rod-shaped bacterium. The bacterium is approximately 1-3 microns in length, and is capable of motility via peritrichous flagella.

<i>Deinococcus radiodurans</i> Species of bacterium

Deinococcus radiodurans is an extremophilic bacterium and one of the most radiation-resistant organisms known. It can survive cold, dehydration, vacuum, and acid, and therefore is known as a polyextremophile. It has been listed as the world's toughest known bacterium in The Guinness Book Of World Records.

Deinococcus geothermalis is a bacterium. It produces orange-pigmented colonies and has an optimum growth temperature of about 45 °C (113 °F) to 50 °C (122 °F). It is extremely gamma radiation-resistant. Its type strain is AG-3a.

Rubrobacter xylanophilus is a thermophilic species of bacteria. It is slightly halotolerant, short rod- and coccus-shaped and gram-positive, with type strain PRD-1T. It is the only true radiation resistant thermophile. It can degrade xylan and hemicellulose. The first strain of the genus Rubrobacter was isolated from gamma-irradiated hot spring water samples by Yoshinaka. This organism was found to be extremely gamma-radiation resistant, with a higher shoulder dose than the canonical radiation resistant species of the genus Deinococcus. The organism stained Gram-positive and was slightly thermophilic with an optimum growth temperature of about 60 °C.

Helicobacter cetorum is a Gram-negative, microaerophilic, spiral (helical) bacterium that is usually found in the stomachs of whales and dolphins. Based on 16S rRNA sequencing, its genome is very similar to that of Helicobacter pylori in that it can cause gastric disease in these animals. Originally isolated among Atlantic white-sided dolphins and Beluga whales in 2000, H. cetorum has been associated with hemorrhages throughout its entire gastrointestinal tract, but its role has not yet been discovered. Prior to the discovery of H. cetorum, there have not been any other Helicobacter species reported in dolphins.

References

  1. 1 2 Phillips, R. W. (2002). "Kineococcus radiotolerans sp. nov., a radiation-resistant, Gram-positive bacterium". International Journal of Systematic and Evolutionary Microbiology. 52 (3): 933–938. doi:10.1099/ijs.0.02029-0. ISSN   1466-5026. PMID   12054260.
  2. Euzéby JP, Parte AC. "Kineococcus radiotolerans". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved May 16, 2022.
  3. Ahmed, Niyaz; Bagwell, Christopher E.; Bhat, Swapna; Hawkins, Gary M.; Smith, Bryan W.; Biswas, Tapan; Hoover, Timothy R.; Saunders, Elizabeth; Han, Cliff S.; Tsodikov, Oleg V.; Shimkets, Lawrence J. (2008). "Survival in Nuclear Waste, Extreme Resistance, and Potential Applications Gleaned from the Genome Sequence of Kineococcus radiotolerans SRS30216". PLOS ONE. 3 (12): e3878. Bibcode:2008PLoSO...3.3878B. doi: 10.1371/journal.pone.0003878 . ISSN   1932-6203. PMC   2587704 . PMID   19057647.
  4. Bagwell, C. E.; Milliken, C. E.; Ghoshroy, S.; Blom, D. A. (2008). "Intracellular Copper Accumulation Enhances the Growth of Kineococcus radiotolerans during Chronic Irradiation" (PDF). Applied and Environmental Microbiology. 74 (5): 1376–1384. Bibcode:2008ApEnM..74.1376B. doi:10.1128/AEM.02175-07. ISSN   0099-2240. PMC   2258627 . PMID   18192425.

Further reading