LY294002

Last updated
LY294002
LY294002.svg
Names
Preferred IUPAC name
2-(Morpholin-4-yl)-8-phenyl-4H-1-benzopyran-4-one
Other names
2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C19H17NO3/c21-17-13-18(20-9-11-22-12-10-20)23-19-15(7-4-8-16(17)19)14-5-2-1-3-6-14/h1-8,13H,9-12H2 X mark.svgN
    Key: CZQHHVNHHHRRDU-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C19H17NO3/c21-17-13-18(20-9-11-22-12-10-20)23-19-15(7-4-8-16(17)19)14-5-2-1-3-6-14/h1-8,13H,9-12H2
    Key: CZQHHVNHHHRRDU-UHFFFAOYAM
  • C1COCCN1C2=CC(=O)C3=C(O2)C(=CC=C3)C4=CC=CC=C4
Properties
C19H17NO3
Molar mass 307.349 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

LY294002 is a morpholine-containing chemical compound that is a potent inhibitor of numerous proteins, and a strong inhibitor of phosphoinositide 3-kinases (PI3Ks). [1] It is generally considered a non-selective research tool, and should not be used for experiments aiming to target PI3K uniquely. [2]

Contents

Two of these are the proto-oncogene serine/threonine-protein kinase (PIM1) and the phosphatidylinositol-4,5-bisphosphate 3-kinase P110 gamma|catalytic subunit gamma isoform. [3] With an IC50 of 1.4 μM it is somewhat less potent than wortmannin, another well-known PI3 kinase inhibitor. However, LY294002 is a reversible inhibitor of PI3K whereas wortmannin acts irreversibly. [4]

Application of LY294002 causes a substantial acceleration of MEPP frequency (150 μM) at the frog neuromuscular junction through a mechanism that is independent of intraterminal calcium. LY294002 causes the release of MEPPs through a perturbation of synaptotagmin function. [5]

LY294002 is also a BET inhibitor (e.g. of BRD2, BRD3, and BRD4). [6]

Application

Research

It has been shown that LY294002 administration has an additive effect on quercetin antiviral activity against hepatitis C virus. [7]

Related Research Articles

<span class="mw-page-title-main">Kinase</span> Enzyme catalyzing transfer of phosphate groups onto specific substrates

In biochemistry, a kinase is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule donates a phosphate group to the substrate molecule. This transesterification produces a phosphorylated substrate and ADP. Conversely, it is referred to as dephosphorylation when the phosphorylated substrate donates a phosphate group and ADP gains a phosphate group. These two processes, phosphorylation and dephosphorylation, occur four times during glycolysis.

<span class="mw-page-title-main">Wortmannin</span> Chemical compound

Wortmannin, a steroid metabolite of the fungi Penicillium funiculosum, Talaromyces wortmannii, is a non-specific, covalent inhibitor of phosphoinositide 3-kinases (PI3Ks). It has an in vitro inhibitory concentration (IC50) of around 5 nM, making it a more potent inhibitor than LY294002, another commonly used PI3K inhibitor. It displays a similar potency in vitro for the class I, II, and III PI3K members although it can also inhibit other PI3K-related enzymes such as mTOR, DNA-PKcs, some phosphatidylinositol 4-kinases, myosin light chain kinase (MLCK) and mitogen-activated protein kinase (MAPK) at high concentrations Wortmannin has also been reported to inhibit members of the polo-like kinase family with IC50 in the same range as for PI3K. The half-life of wortmannin in tissue culture is about 10 minutes due to the presence of the highly reactive C20 carbon that is also responsible for its ability to covalently inactivate PI3K. Wortmannin is a commonly used cell biology reagent that has been used previously in research to inhibit DNA repair, receptor-mediated endocytosis and cell proliferation.

<span class="mw-page-title-main">HER2</span> Mammalian protein found in humans

Receptor tyrosine-protein kinase erbB-2 is a protein that in humans is encoded by the ERBB2 gene. ERBB is abbreviated from erythroblastic oncogene B, a gene originally isolated from the avian genome. The human protein is also frequently referred to as HER2 or CD340.

Anoikis is a form of programmed cell death that occurs in anchorage-dependent cells when they detach from the surrounding extracellular matrix (ECM). Usually cells stay close to the tissue to which they belong since the communication between proximal cells as well as between cells and ECM provide essential signals for growth or survival. When cells are detached from the ECM, there is a loss of normal cell–matrix interactions, and they may undergo anoikis. However, metastatic tumor cells may escape from anoikis and invade other organs.

<span class="mw-page-title-main">Phosphoinositide 3-kinase</span> Class of enzymes

Phosphoinositide 3-kinases (PI3Ks), also called phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking, which in turn are involved in cancer.

<span class="mw-page-title-main">P110α</span> Human protein-coding gene

The phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, also called p110α protein, is a class I PI 3-kinase catalytic subunit. The human p110α protein is encoded by the PIK3CA gene.

<span class="mw-page-title-main">Phosphatidylinositol 4,5-bisphosphate</span> Chemical compound

Phosphatidylinositol 4,5-bisphosphate or PtdIns(4,5)P2, also known simply as PIP2 or PI(4,5)P2, is a minor phospholipid component of cell membranes. PtdIns(4,5)P2 is enriched at the plasma membrane where it is a substrate for a number of important signaling proteins. PIP2 also forms lipid clusters that sort proteins.

<span class="mw-page-title-main">P110δ</span> Protein-coding gene in the species Homo sapiens

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta isoform also known as phosphoinositide 3-kinase (PI3K) delta isoform or p110δ is an enzyme that in humans is encoded by the PIK3CD gene.

<span class="mw-page-title-main">Bromodomain</span>

A bromodomain is an approximately 110 amino acid protein domain that recognizes acetylated lysine residues, such as those on the N-terminal tails of histones. Bromodomains, as the "readers" of lysine acetylation, are responsible in transducing the signal carried by acetylated lysine residues and translating it into various normal or abnormal phenotypes. Their affinity is higher for regions where multiple acetylation sites exist in proximity. This recognition is often a prerequisite for protein-histone association and chromatin remodeling. The domain itself adopts an all-α protein fold, a bundle of four alpha helices each separated by loop regions of variable lengths that form a hydrophobic pocket that recognizes the acetyl lysine.

<span class="mw-page-title-main">C2 domain</span>

A C2 domain is a protein structural domain involved in targeting proteins to cell membranes. The typical version (PKC-C2) has a beta-sandwich composed of 8 β-strands that co-ordinates two or three calcium ions, which bind in a cavity formed by the first and final loops of the domain, on the membrane binding face. Many other C2 domain families don't have calcium binding activity.

<span class="mw-page-title-main">PIK3C2A</span> Protein-coding gene in the species Homo sapiens

Phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing alpha polypeptide is an enzyme that in humans is encoded by the PIK3C2A gene.

<span class="mw-page-title-main">PIK3C2B</span> Protein-coding gene in the species Homo sapiens

Phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing beta polypeptide is an enzyme that in humans is encoded by the PIK3C2B gene.

<span class="mw-page-title-main">PI4KB</span> Protein-coding gene in the species Homo sapiens

Phosphatidylinositol 4-kinase beta is an enzyme that in humans is encoded by the PI4KB gene.

<span class="mw-page-title-main">Phosphoinositide-dependent kinase-1</span> Protein-coding gene in the species Homo sapiens

In the field of biochemistry, PDPK1 refers to the protein 3-phosphoinositide-dependent protein kinase-1, an enzyme which is encoded by the PDPK1 gene in humans. It is implicated in the development and progression of melanomas.

<span class="mw-page-title-main">Phosphoinositide 3-kinase inhibitor</span>

Phosphoinositide 3-kinase inhibitors are a class of medical drugs that are mainly used to treat advanced cancers. They function by inhibiting one or more of the phosphoinositide 3-kinase (PI3K) enzymes, which are part of the PI3K/AKT/mTOR pathway. This signal pathway regulates cellular functions such as growth and survival. It is strictly regulated in healthy cells, but is always active in many cancer cells, allowing the cancer cells to better survive and multiply. PI3K inhibitors block the PI3K/AKT/mTOR pathway and thus slow down cancer growth. They are examples of a targeted therapy. While PI3K inhibitors are an effective treatment, they can have very severe side effects and are therefore only used if other treatments have failed or are not suitable.

<span class="mw-page-title-main">JQ1</span> Chemical compound

JQ1 is a thienotriazolodiazepine and a potent inhibitor of the BET family of bromodomain proteins which include BRD2, BRD3, BRD4, and the testis-specific protein BRDT in mammals. BET inhibitors structurally similar to JQ1 are being tested in clinical trials for a variety of cancers including NUT midline carcinoma. It was developed by the James Bradner laboratory at Brigham and Women's Hospital and named after chemist Jun Qi. The chemical structure was inspired by patent of similar BET inhibitors by Mitsubishi Tanabe Pharma [WO/2009/084693]. Structurally it is related to benzodiazepines. While widely used in laboratory applications, JQ1 is not itself being used in human clinical trials because it has a short half life.

BET inhibitors are a class of drugs that reversibly bind the bromodomains of Bromodomain and Extra-Terminal motif (BET) proteins BRD2, BRD3, BRD4, and BRDT, and prevent protein-protein interaction between BET proteins and acetylated histones and transcription factors.

Phosphatidylinositol-4-phosphate 5-kinases are a class of enzymes that phosphorylate phosphatidylinositol 4-phosphate. They perform this reaction on the fifth hydroxyl of the myo-inositol ring to form phosphatidylinositol 4,5-bisphosphate.

<span class="mw-page-title-main">Roger L. Williams</span>

Roger Lee Williams is a structural biologist and group leader at the Medical Research Council (MRC) Laboratory of Molecular Biology. His group studies the form and flexibility of protein complexes that associate with and modify lipid cell membranes. His work concerns the biochemistry, structures and dynamics of these key enzyme complexes.

<span class="mw-page-title-main">Bump and hole</span>

The bump-and-hole method is a tool in chemical genetics for studying a specific isoform in a protein family without perturbing the other members of the family. The unattainability of isoform-selective inhibition due to structural homology in protein families is a major challenge of chemical genetics. With the bump-and-hole approach, a protein–ligand interface is engineered to achieve selectivity through steric complementarity while maintaining biochemical competence and orthogonality to the wild type pair. Typically, a "bumped" ligand/inhibitor analog is designed to bind a corresponding "hole-modified" protein. Bumped ligands are commonly bulkier derivatives of a cofactor of the target protein. Hole-modified proteins are recombinantly expressed with an amino acid substitution from a larger to smaller residue, e.g. glycine or alanine, at the cofactor binding site. The designed ligand/inhibitor has specificity for the engineered protein due to steric complementarity, but not the native counterpart due to steric interference.

References

  1. Maira; et al. (2009). "PI3K inhibitors for cancer treatment: where do we stand?". Biochemical Society Transactions. 37 (Pt 1): 265–272. doi:10.1042/BST0370265. PMID   19143644.
  2. Arrowsmith, Cheryl H.; Audia, James E.; Austin, Christopher; Baell, Jonathan; Bennett, Jonathan; Blagg, Julian; Bountra, Chas; Brennan, Paul E.; Brown, Peter J. (2015-08-01). "The promise and peril of chemical probes". Nature Chemical Biology. 11 (8): 536–541. doi:10.1038/nchembio.1867. ISSN   1552-4450. PMC   4706458 . PMID   26196764.
  3. "Card for LY294002 in DrugBank". DrugBank. Retrieved 2009-09-25.
  4. Chris J. Vlahos; et al. (1994). "A Specific Inhibitor of Phosphatidylinositol 3-Kinase, 2-(4-Morpholinyl)-8-phenyl-4H-l-benzopyran-4-one (LY294002)". Journal of Biological Chemistry. 269 (7): 5241–5248. doi: 10.1016/S0021-9258(17)37680-9 . PMID   8106507.
  5. Searl TJ, Silinsky EM (Dec 2005). "LY 294002 inhibits adenosine receptor activation by a mechanism independent of effects on PI-3 kinase or casein kinase II". Purinergic Signal. 1 (4): 389–94. doi:10.1007/s11302-005-0778-6. PMC   2096559 . PMID   18404524.
  6. Dittmann, Antje; Werner, Thilo; Chung, Chun-Wa; Savitski, Mikhail M.; Fälth Savitski, Maria; Grandi, Paola; Hopf, Carsten; Lindon, Matthew; Neubauer, Gitte; Prinjha, Rabinder K.; Bantscheff, Marcus; Drewes, Gerard (2013). "The Commonly Used PI3-Kinase Probe LY294002 is an Inhibitor of BET Bromodomains". ACS Chemical Biology. 9 (2): 495–502. doi:10.1021/cb400789e. PMID   24533473.
  7. Pisonero-Vaquero S (Mar 2014). "Modulation of PI3K-LXRα-dependent lipogenesis mediated by oxidative/nitrosative stress contributes to inhibition of HCV replication by quercetin". Lab. Invest. 94 (3): 262–274. doi: 10.1038/labinvest.2013.156 . PMID   24492281.