Langbeinites

Last updated

Langbeinites are a family of crystalline substances based on the structure of langbeinite with general formula M2M'2(SO4)3, where M is a large univalent cation (such as potassium, rubidium, caesium, or ammonium), and M' is a small divalent cation (for example, magnesium, calcium, manganese, iron, cobalt, nickel, copper, zinc or cadmium). The sulfate group, SO2−4, can be substituted by other tetrahedral anions with a double negative charge such as tetrafluoroberyllate (BeF2−4), selenate (SeO2−4), chromate (CrO2−4), molybdate (MoO2−4), or tungstates. Although monofluorophosphates are predicted, they have not been described. By redistributing charges other anions with the same shape such as phosphate also form langbeinite structures. In these the M' atom must have a greater charge to balance the extra three negative charges.

Contents

At higher temperatures the crystal structure is cubic P213. [1] However, the crystal structure may change to lower symmetries at lower temperatures, for example, P21, P1, or P212121. [1] Usually this temperature is well below room temperature, but in a few cases the substance must be heated to acquire the cubic structure.

Crystal structure

The crystal structures of langbeinites consist of a network of oxygen vertex-connected tetrahedral polyanions (such as sulfate) and distorted metal ion-oxygen octahedra. [2] The unit cell contains four formula units. In the cubic form the tetrahedral anions are slightly rotated from the main crystal axes. When cooled, this rotation disappears and the tetrahedra align, resulting in lower energy as well as lower crystal symmetry.

Examples

Sulfates include dithallium dicadmium sulfate, [3] dirubidium dicadmium sulfate, [4] dipotassium dicadmium sulfate, [5] dithallium manganese sulfate, [6] and dirubidium dicalcium trisulfate. [7]

Selenates include diammonium dimanganese selenate. [1] A diammonium dicadmium selenate langbeinite could not be crystallised from water, but a trihydrate exists. [8]

Chromate based langbeinites include dicaesium dimanganese chromate. [1]

Molybdates include Rb2Co2(MoO4)3. [1] Potassium members are absent, as are zinc and copper containing solids, which all crystallize in different forms. Manganese, magnesium, cadmium and some nickel double molybdates exist as langbeinites. [9]

Double tungstates of the form A2B2(WO4)3 are predicted to exist in the langbeinite form. [10]

An examples with tetrafluroberyllate is dipotassium dimanganese tetrafluoroberyllate (K2Mn2(BeF4)3). [11] Other tetrafluoroberyllates may include: Rb2Mg2(BeF4)3; Tl2Mg2(BeF4)3; Rb2Mn2(BeF4)3; Tl2Mn2(BeF4)3; Rb2Ni2(BeF4)3; Tl2Ni2(BeF4)3; Rb2Zn2(BeF4)3; Tl2Zn2(BeF4)3; Cs2Ca2(BeF4)3; Rb2Ca2(BeF4)3; RbCsMnCd(BeF4)3; Cs2MnCd(BeF4)3; RbCsCd2(BeF4)3; Cs2Cd2(BeF4)3; Tl2Cd2(BeF4)3; (NH4)2Cd2(BeF4)3; KRbMnCd(BeF4)3; K2MnCd(BeF4)3; Rb2MnCd(BeF4)3; Rb2Cd2(BeF4)3; RbCsCo2(BeF4)3; (NH4)2Co2(BeF4)3; K2Co2(BeF4)3; Rb2Co2(BeF4)3; Tl2Co2(BeF4)3; RbCsMn2(BeF4)3; Cs2Mn2(BeF4)3; RbCsZn2(BeF4)3; (NH4)2Mg2(BeF4)3; (NH4)2Mn2(BeF4)3; (NH4)2Ni2(BeF4)3; (NH4)2Zn2(BeF4)3;KRbMg2(BeF4)3; K2Mg2(BeF4)3; KRbMn2(BeF4)3; K2Ni2(BeF4)3; K2Zn2(BeF4)3. [12]

The phosphate containing langbeinites were found in 1972 with the discovery of KTi2(PO4)3, and since then a few more phosphates that also contain titanium have been found such as Na2FeTi(PO4)3 and Na2CrTi(PO4)3. By substituting metals in A2MTi(PO4)3, A from (K, Rb, Cs), and M from (Cr, Fe, V), other langbeinites are made. The NASICON-type structure competes for these kinds of phosphates, so not all possibilities are langbeinites. [1] Other phosphate based substances include K2YTi(PO4)3, K2ErTi(PO4)3, K2YbTi(PO4)3, K2CrTi(PO4)3, [1] K2AlSn(PO4)3, [13] KRbYbTi(PO4)3. [14] Sodium barium diiron tris-(phosphate) (NaBaFe2(PO4)3) is yet another variation with the same structure but differently charged ions. [15] Most phosphates of this kind of formula do not form langbeinites, instead crystallise in the NASICON structure with archetype Na3Zr2(PO4)(SiO4)2. [1]

A langbeinite with arsenate is known to exist by way of K2ScSn(AsO4)3. [16]

Properties

Physical properties

Langbeinite-family crystals can show ferroelectric or ferroelastic properties. [1] Diammonium dicadmium sulfate identified by Jona and Pepinsky [17] with a unit cell size of 10.35 Å becomes ferroelectric when the temperature drops below 95 K. [18] The phase transition temperature is not fixed, and can vary depending on the crystal or history of temperature change. So for example the phase transition in diammonium dicadmium sulfate can occur between 89 and 95 K. [19] Under pressure the highest phase transition temperature increases. ∂T/∂P = 0.0035 degrees/bar. At 824 bars there is a triple point with yet another transition diverging at a slope of ∂T/∂P = 0.103 degrees/bar. [20] For dipotassium dimanganese sulfate pressure causes the transition to rise at the rate of 6.86 °C/kbar. The latent heat of the transition is 456 cal/mol. [21]

Dithallium dicadmium sulfate was shown to be ferroelectric in 1972. [22]

Dipotassium dicadmium sulfate is thermoluminescent with stronger outputs of light at 350 and 475 K. This light output can be boosted forty times with a trace amount of samarium. [23] Dipotassium dimagnesium sulfate doped with dysprosium develops thermoluminescence and mechanoluminescence after being irradiated with gamma rays. [24] Since gamma rays occur naturally, this radiation induced thermoluminescence can be used to date evaporites in which langbeinite can be a constituent. [25]

At higher temperatures the crystals take on cubic form, whereas at the lowest temperatures they can transform to an orthorhombic crystal group. For some types there are two more phases, and as the crystal is cooled it goes from cubic, to monoclinic, to triclinic to orthorhombic. This change to higher symmetry on cooling is very unusual in solids. [26] For some langbeinites only the cubic form is known, but that may be because it has not been studied at low enough temperatures yet. Those that have three phase transitions go through these crystallographic point groups: P213 – P21 – P1 – P212121, whereas the single phase change crystals only have P213 – P212121.

K2Cd2(SO4)3 has a transition temperature above room temperature, so that it is ferroelectric in standard conditions. The orthorhombic cell size is a=10.2082 Å, b=10.2837 Å, c=10.1661 Å. [27]

Where the crystals change phase there is a discontinuity in the heat capacity. The transitions may show thermal hysteresis. [28]

Different cations can be substituted so that for example K2Cd2(SO4)3 and Tl2Cd2(SO4)3 can form solid solutions for all ratios of thallium and potassium. Properties such as the phase transition temperature and unit cell sizes vary smoothly with the composition. [29]

Langbeinites containing transition metals can be coloured. For example, cobalt langbeinite shows a broad absorption around 555 nm due to the cobalt 4T1g(F)4T1g(P) electronic transition. [30]

The enthalpy of formation (ΔfHm) for solid (NH4)2Cd2(SO4)3 at 298.2 K is −3031.74±0.08 kJ/mol, and for K2Cd2(SO4)3 it is −3305.52±0.17 kJ/mol. [31]

Sulfates

Properties of langbeinites with sulfate anions
FormulaWeight (g/mol)Comment / SymmetriesTransition temperature (K)DensityCell size (Å)Refractive index
123 [32]
Na2Mg2(SO4)3382.783 phases, 1–2, >3250350575 [33]
K2Mg2(SO4)3414.994 phases langbeinite 5154.963.82.832 [34] 9.9211 [35] 1.536 [36]
Rb2Mg2(SO4)3507.73made3.367 [37] 10.0051 [38] 1.556 [38]
Cs2Mg2(SO4)3602.61no compound [10]
(NH4)2Mg2(SO4)3372.87 Efremovite [39] 241 [40] 220 [40] 2.49 [41] 9.979 [41]
Tl2Mg2(SO4)3745.56≥3 phase227.8 [40] 330.8 [40]
K2CaMg(SO4)3430.77made2.723 [42] 10.1662 [42] 1.525 [42]
K2Ca2(SO4)3446.544 phases calciolangbeinite [43] [44] [45] 4572.69 2.683 [46] 10.429Å a=10.334 b=10.501 c=10.186Nα=1.522 Nβ=1.526 Nγ=1.527
Rb2Ca2(SO4)3539.282 phases1833.034 [47] 10.5687 [47] 1.520 [47]
Cs2Ca2(SO4)3634.153.417 [48] [49] 10.72131.549
Tl2Ca2(SO4)3no compound [10]
(NH4)2Ca2(SO4)3404.42made1582.297 [50] 10.5360 [51] 1.532 [51]
(NH4)2V2(SO4)3colour clear green [52] 2.76 [53] 10.089 [52]
K2Mn2(SO4)3476.26manganolangbeinite [54]
2 phases
pale pink [55]
1913.02 [35] 10.014 [35]
(orthorhombic)
a=10.081, b=10.108, c=10.048 Å [56]
1.576 [55]
Rb2Mn2(SO4)3569made [57] 3.546 [58] 10.2147 [58] 1.590 [58]
Cs2Mn2(SO4)3663.87predicted [10]
(NH4)2Mn2(SO4)2434.14made2.72 [41] 10.1908 [59]
Tl2Mn2(SO4)3806.83made5.015 [60] 10.2236 [60] 1.722 [60]
K2Fe2(SO4)3478.07made?130
Rb2Fe2(SO4)3predicted [10]
Tl2Fe2(SO4)3808.64exists [10]
(NH4)2Fe2(SO4)3 [52] 435.95mineral ferroefremovite 2.84 [41] 10.068 [41] 1.574 [61]
K2Co2(SO4)3484.252 phases
deep purple
1263.280 [34] 9.9313 [35] 1.608 [62]
Rb2Co2(SO4)3576.99made3.807 [63] 10.0204 [63] 1.602 [63]
Cs2Co2(SO4)3671.87
(NH4)2Co2(SO4)3442.13made2.94 [41] 9.997 [41]
Tl2Co2(SO4)3813.82made5.361 [64] 10.03121.775
K2Ni2(SO4)3483.77made [65] light greenish yellow [66] 3.369 [34] 9.8436 [66] 1.620 [66]
Rb2Ni2(SO4)3576.51made3.921 [67] 9.9217 [67] 1.636 [67]
Cs2Ni2(SO4)3671.39predicted [10]
(NH4)2Ni2(SO4)3441.65made [65] 1603.02 [41] 9.904 [41]
Tl2Ni2(SO4)3814.34predicted [10]
Rb2Cu2(S04)3predicted [10]
Cs2Cu2(S04)3predict not [10]
Tl2Cu2(S04)3predicted [10]
K2Zn2(SO4)3497.14 phases751383.376 [34] 9.9247 [68] 1.592 [68]
Rb2Zn2(S04)3predicted [10]
Cs2Zn2(S04)3predict not [10]
Tl2Zn2(S04)3predicted [10]
K2Cd2(SO4)3591.212 phases4322.615 3.677 [69] a=10.212 b=10.280 c=10.171Nα=1.588 Nγ=1.592
Rb2Cd2(SO4)3683.954 phases661031294.060 [35] [70] 10.3810 [35] [70] 1.590 [70]
(NH4)2Cd2(SO4)3549.094 phases953.288 [35] 10.3511 [35]
Tl2Cd2(SO4)3921.784 phases921201325.467 [35] 10.3841 [35] 1.730 [71]

Fluoroberyllates

Properties of langbeinites with fluoroberyllate (BeF2−4) anion
FormulaWeight (g/mol)Cell size (Å)VolumeDensityComment
K2Mn2(BeF4)3 [11] 4 phases transition at 213
K2Mg2(BeF4)3 [72] 9.875962.81.59
(NH4)2Mg2(BeF4)3 [72] 9.9681.37
KRbMg2(BeF4)3 [72] 9.9331.72
Rb2Mg2(BeF4)3 [72] 9.9711.91
Tl2Mg2(BeF4)3 [72] 9.9972.85
K2Ni2(BeF4)3 [72] 9.8881.86
Rb2Ni2(BeF4)3 [72] 9.9742.19
Tl2Ni2(BeF4)3 [72] 9.9933.13
K2Co2(BeF4)3 [72] 9.9639881.82
(NH4)2Co2(BeF4)3 [72] 10.0521.61
Rb2Co2(BeF4)3 [72] 10.0612.14
Tl2Co2(BeF4)3 [72] 10.0783.05
RbCsCo2(BeF4)3 [72] 10.1152.28
K2Zn2(BeF4)3 [72] 9.9321.89
(NH4)Zn2(BeF4)3 [72] 10.0361.67
Rb2Zn2(BeF4)3 [72] 10.0352.20
Tl2Zn2(BeF4)3 [72] 10.0603.14
RbCsZn2(BeF4)3 [72] 10.1022.36
K2Mn2(BeF4)3 [72] 10.1021.72
KRbMn2(BeF4)3 [72] 10.1871.82
(NH4)2Mn2(BeF4)3 [72] 10.2171.50
Rb2Mn2(BeF4)3 [72] 10.2432.00
Tl2Mn2(BeF4)3 [72] 10.2552.87
RbCsMn2(BeF4)3 [72] 10.3272.12
Cs2Mn2(BeF4)3 [72] 10.3762.26
K2MnCd(BeF4)3 [72] 10.1331.92
KRbMnCd(BeF4)3 [72] 10.2202.04
Rb2MnCd(BeF4)3 [72] 10.1331.92
RbCsMnCd(BeF4)3 [72] 10.3802.28
Cs2MnCd(BeF4)3 [72] 10.4512.41
(NH4)2Cd2(BeF4)3 [72] 10.3421.87
Rb2Cd2(BeF4)3 [72] 10.3852.32
Tl2Cd2(BeF4)3 [72] 10.4023.16
RbCsCd2(BeF4)3 [72] 10.4742.43
Cs2Cd2(BeF4)3 [72] 10.5582.53
RbCsCdCa(BeF4)3 [72] 10.5012.15
Rb2Ca2(BeF4)3 [72] 10.4801.74
RbCsCa2(BeF4)3 [72] 10.5831.86
Cs2Ca2(BeF4)3 [72] 10.6721.98
Cs2Mg2(BeF4)3does not exist [72]

Phosphates

Properties of langbeinites with phosphate (PO2−4) anion
FormulaWeight (g/mol)Cell size (Å)DensityCommentref
LiCs2Y2(PO4)3735.4810.59454.108 [73]
LiRb2Y2(PO4)3non-linear optical [74]
K2YTi(PO4)3578.2510.10533.192 [1]
K2ErTi(PO4)3584.0310.0943.722 [1]
K2YbTi(PO4)3499.8910.13183.772 [1]
K2CrTi(PO4)3462.989.80013.267 [1]
(NH4)(H3O)TiIIITiIV(PO4)3417.719.9384 [75]
K2Ti2(PO4)3458.849.8688Also K2−x; dark blue [76]
Rb2Ti2(PO4)3551.589.9115 [76]
Tl2Ti2(PO4)3789.419.9386 [76]
Na2FeTi(PO4)39.837 [77]
Na2CrTi(PO4)39.775 [77]
K2Mn0.5Ti1.5(PO4)39.9033.162dark brown [78]
K2Co0.5Ti1.5(PO4)39.8443.233dark brown [78]
Rb4NiTi3(PO4)61113.99÷29.9386 [79]
K2AlTi(PO4)3437.969.76413.125colourless [80]
K2TiYb(PO4)3 [81]
Li2Zr2(PO4)3481.24 [82]
NaZr2(PO4)3980,7110.20883.06125negative thermal expansion 25-500 °C [83]
K2(Ce, ..., Lu)Zr(PO4)3594.45...629.310.29668 [84]
Rb2FeZr(PO4)3602.9210.1199 [85]
K2FeZr(PO4)3510.1810.0554dark grey Note Na2FeZr(PO4)3 is not a langbeinite. [86] [87]
K2YZr(PO4)3543.2410.3346random Y and Zr [88]
K2GdZr(PO4)3611.5810.3457random Gd and Zr [88]
K2YHf(PO4)3630.5110.30753.824 [89]
Li(H2O)2Hf2(PO4)3684.8710.1993 [90]
K2BiHf(PO4)3750.58 [91]
Li(H2O)2Zr2(PO4)3510.3310.2417 [82]
K2AlSn(PO4)3508.789.798 [13]
K2CrSn(PO4)39.8741[ citation needed ]
K2InSn(PO4)310.0460[ citation needed ]
K2FeSn(PO4)39.921[ citation needed ]
K2YbSn(PO4)310.150[ citation needed ]
K4Al3Ta(PO4)6988.119.7262 [92]
K4Cr3Ta(PO4)61063.169.8315 [92]
K4Fe3Ta(PO4)61074.709.9092 [92]
K4Tb3Ta(PO4)610.3262 [93]
K4Ga3Ta(PO4)6 [94]
K4Gd3Ta(PO4)6 [94]
K4Dy3Ta(PO4)6 [94]
K4Ho3Ta(PO4)6 [94]
K4Er3Ta(PO4)6 [94]
K4Yb3Ta(PO4)6 [94]
Rb4Ga3Ta(PO4)6 [94]
Rb4Gd3Ta(PO4)6 [94]
Rb4Dy3Ta(PO4)6 [94]
Rb4Ho3Ta(PO4)6 [94]
Rb4Er3Ta(PO4)6 [94]
Rb4Yb3Ta(PO4)6 [94]
K4Fe3Nb(PO4)6986.669.9092 [92]
KBaEr2(PO4)3795.857 [95]
RbBaEr2(PO4)3842.227 [95]
CsBaEr2(PO4)3889.665 [95]
(Rb,Cs)2(Pr,Er)Zr(PO4)3 [95]
KCsFeZrP3O12603.9910.103 [96]
CaFe3O(PO4)3508.53 [97]
SrFe3O(PO4)3556.1 [97]
PbFe3O(PO4)3675.6 [97]
KSrFe2(PO4)3523.329.8093.68yellowish [98]
Pb1.5VIV2(PO4)3697.69.78184.912 [99]
K2TiV(PO4)39.855green [100]
BaTiV(PO4)39.9223.54at high temperature > 950 °C dark grey [100]
KBaV2(PO4)39.873greenish yellow [100]
Ba1.5V2(PO4)39.884grey [100]
Ba1.5Fe3+2(PO4)3 [101] [102] 602.59
KSrSc2(PO4)3 [103] 501.54
Rb0.743K0.845Co0.293Ti1.707(PO4)3 [104] 9.8527
K2BiZr(PO4)6 [105] 663.3210.3036
KBaSc2(PO4)3 [106] 503.25
KBaIn2(PO4)3 [107]
KBaRZrP2SiO12 [2] R = La, Nd, Sm, Eu, Gd, Dy, Y
KBaYSnP2SiO12 [2] 666.07
KBaFe2(PO4)3 [108] 525.039.8732 (at 4 K)
KBaCr2(PO4)3 [109] 517.339.7890
Rb2FeTi(PO4)3 [110] 511.569.8892Na2FeTi(PO4)3 has NZP structure [87]
KBaMgTi(PO4)3 [111] 485.519.914KSrMgTi crystallises in kosnarite form
KPbMgTi(PO4)3 [111] 555.399.8540KSrMgTi in kosnarite form
RbBaMgTi(PO4)39.954531.88CsBa does not form [111]
RbPbMgTi(PO4)3601.769.9090CsPb does not form [111]
KSrMgZr(PO4)3479.1610.165 [111]
KPbMgZr(PO4)3598.7410.111 [111]
KBaMgZr(PO4)3528.8710.106 [111]
RbSrMgZr(PO4)3525.5310.218 [111]
RbPbMgZr(PO4)3645.1110.178 [111]
RbBaMgZr(PO4)3575.2410.178 [111]
CsSrMgZr(PO4)3572.9710.561over 1250 °C forms kosnarite phase [111]
Ba3In4(PO4)610.1129 [112]
Ba3V4(PO4)61185.589.88254.08yellow-green [113]
KPbCr2(PO4)39.7332 [114]
KPbFe2(PO4)39.8325beige [114]
K4NiHf3(PO4)6660.192 (half)10.122014.228yellow [115]
NaBaBi2(PO3)3 [116]

Phosphate silicates

substanceformula weightunit cell edge Ådensitycommentref
K2Sn2(PO4)2SiO4 [117] Stable to 650 °C
K2Zr2(PO4)2SiO4 [117] Stable to 1000 °C
Cs2Zr2(PO4)2SiO4 [118]
CsKZr2(PO4)2SiO4 [118]
KBaZrY(PO4)2SiO4 [119]
KBaZrLa(PO4)2SiO4 [119]
KBaZrNd(PO4)2SiO4 [119]
KBaZrSm(PO4)2SiO4 [119]
KBaZrEu(PO4)2SiO4 [119]

Mixed anion phosphates

substanceformula weightunit cell edge Ådensitycommentref
K2MgTi(SO4)(PO4)2 [120]
K2Fe2(MoO4)(PO4)2 [121]
K2Sc2(MoO4)(PO4)2 [121]
K2Sc2(WO4)(PO4)2 [121]

Vanadates

The orthovanadates have four formula per cell, with a slightly distorted cell that has orthorhombic symmetry.

formula weightcommentCell dimensions ÅVolumedensityrefractive
Formulag/molsymmetriesabcindex
LiBaCr2(VO4)3 [122] 593.08Orthorhombic9.9810.529.519984.02
NaBaCr2(VO4)3 [122] 609.13Orthorhombic9.9910.529.5310024.09
AgBaCr2(VO4)3 [122] 694.00Orthorhombic10.0210.539.5310054.62

Arsenates

substanceformula weightunit cell edge Ådensity
K2ScSn(AsO4)3 [123] 658.6210.3927
Zr2NH4(AsO4)3·H2O [124] 632.55810.5323.379

Selenates

Langbeinite structured double selenates are difficult to make, perhaps because selenate ions arranged around the dication leave space for water, so hydrates crystallise from double selenate solutions. For example, when ammonia selenate and cadmium selenate solution is crystallized it forms diammonium dicadmium selenate trihydrate: (NH4)2Cd2(SeO4)3·3H2O and when heated it loses both water and ammonia to form a pyroselenate rather than a langbeinite. [125]

substanceformula weightunit cell edge Ådensitynote
(NH4)2Mn2(SeO4)3 [126] 574.8310.533.26forms continuous series with SO4 too

Molybdates

substanceformula weightunit cell edge Ådensityref
Cs2Cd2(MoO4)3970.511.239 [127]
Rb2Co2(MoO4)3768.7
Cs2Co2(MoO4)3 [128]
Cs2Fe2(MoO4)310.9112 [129]
Cs2Ni2(MoO4)3863.0110.7538 [130]
(H3O)2Mn2(MoO4)3627.7510.8713 [131]
K2Mn2(MoO4)3 [132]

Tungstates

substanceformula weightunit cell edge Ådensity
Rb2Mg2(WO4)3 [133] 963.0610.766
Cs2Mg2(WO4)3 [133] 1057.9310.878

Preparation

Diammonium dicadmium sulfate can be made by evaporating a solution of ammonium sulfate and cadmium sulfate. [19] Dithallium dicadmium sulfate can be made by evaporating a water solution at 85 °C. [22] Other substances may be formed during crystallisation from water such as Tutton's salts or competing compounds like Rb2Cd3(SO4)4·5H2O. [134]

Potassium and ammonium nickel langbeinite can be made from nickel sulfate and the other sulfates by evaporating a water solution at 85 °C. [65]

Dipotassium dizinc sulfate can be formed into large crystals by melting zinc sulfate and potassium sulfate together at 753 K. A crystal can be slowly drawn out of the melt from a rotating crucible at about 1.2 mm every hour. [135]

Li(H2O)2Hf2(PO4)3 can be made by heating HfCl4, Li2B4O7, H3PO4, water and hydrochloric acid to 180 °C for eight days under pressure. [90] Li(H2O)2Hf2(PO4)3 converts to Li2Hf2(PO4)3 on heating to 200 °C. [82]

The sol-gel method produces a gel from a solution mixture, which is then heated. Rb2FeZr(PO4)3 can be made by mixing solutions of FeCl3, RbCl, ZrOCl2, and dripping in H3PO4. The gel produced was dried out at 95 °C and then baked at various temperatures from 400 to 1100 °C. [85]

Langbeinites crystals can be made by the Bridgman technique, Czochralski process or flux technique.

A Tutton's salt may be heat treated and dehydrate, e.g. (NH4)2Mn2(SeO4)3 can be made from (NH4)2Mn(SeO4)3·6(H2O) heated to 100 °C, forming (NH4)2(SeO4) as a side product. [136] Similarly the ammonium vanadium Tutton's salt, (NH4)2V(SO4)2, heated to 160 °C in a closed tube produces (NH4)2V2(SO4)3. At lower temperatures a hydroxy compound is formed. [52]

Use

Few uses have been made of these substances. Langbeinite itself can be used as an "organic" fertiliser with potassium, magnesium and sulfur, all needed for plant growth. Electrooptic devices could be made from some of these crystals, particularly those that have cubic transition temperatures as temperatures above room temperature. Research continues into this. Ferroelectric crystals could store information in the location of domain walls.

The phosphate langbeinites are insoluble, stable against heat, and can accommodate a large number of different ions, and have been considered for immobilizing unwanted radioactive waste. [137]

Zirconium phosphate langbeinites containing rare earth metals have been investigated for use in white LEDs and plasma displays. [105] Langbeinites that contain bismuth are photoluminescent. [105] In case of iron-containing ones complex magnetic behavior may be found. [138]

Related Research Articles

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

<span class="mw-page-title-main">Ammonium sulfate</span> Chemical compound

Ammonium sulfate (American English and international scientific usage; ammonium sulphate in British English); (NH4)2SO4, is an inorganic salt with a number of commercial uses. The most common use is as a soil fertilizer. It contains 21% nitrogen and 24% sulfur.

<span class="mw-page-title-main">Vanadyl sulfate</span> Chemical compound

Vanadyl(IV) sulfate describes a collection of inorganic compounds of vanadium with the formula, VOSO4(H2O)x where 0 ≤ x ≤ 6. The pentahydrate is common. This hygroscopic blue solid is one of the most common sources of vanadium in the laboratory, reflecting its high stability. It features the vanadyl ion, VO2+, which has been called the "most stable diatomic ion".

Indium(III) sulfate (In2(SO4)3) is a sulfate salt of the metal indium. It is a sesquisulfate, meaning that the sulfate group occurs 11/2 times as much as the metal. It may be formed by the reaction of indium, its oxide, or its carbonate with sulfuric acid. An excess of strong acid is required, otherwise insoluble basic salts are formed. As a solid indium sulfate can be anhydrous, or take the form of a pentahydrate with five water molecules or a nonahydrate with nine molecules of water. Indium sulfate is used in the production of indium or indium containing substances. Indium sulfate also can be found in basic salts, acidic salts or double salts including indium alum.

<span class="mw-page-title-main">Tin(II) sulfate</span> Chemical compound

Tin(II) sulfate (SnSO4) is a chemical compound. It is a white solid that can absorb enough moisture from the air to become fully dissolved, forming an aqueous solution; this property is known as deliquescence. It can be prepared by a displacement reaction between metallic tin and copper(II) sulfate:

Tutton's salts are a family of salts with the formula M2M'(SO4)2(H2O)6 (sulfates) or M2M'(SeO4)2(H2O)6 (selenates). These materials are double salts, which means that they contain two different cations, M+ and M'2+ crystallized in the same regular ionic lattice. The univalent cation can be potassium, rubidium, caesium, ammonium (NH4), deuterated ammonium (ND4) or thallium. Sodium or lithium ions are too small. The divalent cation can be magnesium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc or cadmium. In addition to sulfate and selenate, the divalent anion can be chromate (CrO42−), tetrafluoroberyllate (BeF42−), hydrogenphosphate (HPO42−) or monofluorophosphate (PO3F2−). Tutton's salts crystallize in the monoclinic space group P21/a. The robustness is the result of the complementary hydrogen-bonding between the tetrahedral anions and cations as well their interactions with the metal aquo complex [M(H2O)6]2+.

<span class="mw-page-title-main">Tetrafluoroberyllate</span> Anion

Tetrafluoroberyllate or orthofluoroberyllate is an anion with the chemical formula [BeF4]2−. It contains beryllium and fluorine. This fluoroanion has a tetrahedral shape, with the four fluorine atoms surrounding a central beryllium atom. It has the same size, charge, and outer electron structure as sulfate SO2−4. Therefore, many compounds that contain sulfate have equivalents with tetrafluoroberyllate. Examples of these are the langbeinites, and Tutton's salts.

<span class="mw-page-title-main">Monofluorophosphate</span> Chemical compound

Monofluorophosphate is an anion with the formula PO3F2−, which is a phosphate group with one oxygen atom substituted with a fluoride atom. The charge of the ion is −2. The ion resembles sulfate in size, shape and charge, and can thus form compounds with the same structure as sulfates. These include Tutton's salts and langbeinites. The most well-known compound of monofluorophosphate is sodium monofluorophosphate, commonly used in toothpaste.

Tetracalcium phosphate is the compound Ca4(PO4)2O, (4CaO·P2O5). It is the most basic of the calcium phosphates, and has a Ca/P ratio of 2, making it the most phosphorus poor phosphate. It is found as the mineral hilgenstockite, which is formed in industrial phosphate rich slag (called "Thomas slag"). This slag was used as a fertiliser due to the higher solubility of tetracalcium phosphate relative to apatite minerals. Tetracalcium phosphate is a component in some calcium phosphate cements that have medical applications.

Sodium magnesium sulfate is a double sulfate of sodium and magnesium. There are a number of different stoichiometries and degrees of hydration with different crystal structures, and many are minerals. Members include:

<span class="mw-page-title-main">Vanadium(II) sulfate</span> Chemical compound

Vanadium(II) sulfate describes a family of inorganic compounds with the formula VSO4(H2O)x where 0 ≤ x ≤ 7. The hexahydrate is most commonly encountered. It is a violet solid that dissolves in water to give air-sensitive solutions of the aquo complex. The salt is isomorphous with [Mg(H2O)6]SO4. Compared to the V–O bond length of 191 pm in [V(H2O)6]3+, the V–O distance is 212 pm in the [V(H2O)6]SO4. This nearly 10% elongation reflects the effect of the lower charge, hence weakened electrostatic attraction.

Nickel is one of the metals that can form Tutton's salts. The singly charged ion can be any of the full range of potassium, rubidium, cesium, ammonium (), or thallium. As a mineral the ammonium nickel salt, (NH4)2Ni(SO4)2 · 6 H2O, can be called nickelboussingaultite. With sodium, the double sulfate is nickelblödite Na2Ni(SO4)2 · 4 H2O from the blödite family. Nickel can be substituted by other divalent metals of similar sized to make mixtures that crystallise in the same form.

<span class="mw-page-title-main">Nickel oxyacid salts</span>

The Nickel oxyacid salts are a class of chemical compounds of nickel with an oxyacid. The compounds include a number of minerals and industrially important nickel compounds.

<span class="mw-page-title-main">Sulfate carbonate</span> Class of chemical compounds

The sulfate carbonates are a compound carbonates, or mixed anion compounds that contain sulfate and carbonate ions. Sulfate carbonate minerals are in the 7.DG and 5.BF Nickel-Strunz groupings.

Borate phosphates are mixed anion compounds containing separate borate and phosphate anions. They are distinct from the borophosphates where the borate is linked to a phosphate via a common oxygen atom. The borate phosphates have a higher ratio of cations to number of borates and phosphates, as compared to the borophosphates.

A tellurite fluoride is a mixed anion compound containing tellurite and fluoride ions. They have also been called oxyfluorotellurate(IV) where IV is the oxidation state of tellurium in tellurite.

A selenate selenite is a chemical compound or salt that contains selenite and selenate anions (SeO32- and SeO42-). These are mixed anion compounds. Some have third anions.

The phosphate sulfates are mixed anion compounds containing both phosphate and sulfate ions. Related compounds include the arsenate sulfates, phosphate selenates, and arsenate selenates.

Oxalate sulfates are mixed anion compounds containing oxalate and sulfate. They are mostly transparent, and any colour comes from the cations.

Protactinium compounds are compounds containing the element protactinium. These compounds usually have protactinium in the +5 oxidation state, although these compounds can also exist in the +2, +3 and +4 oxidation states.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 Norberg, Stefan T. (2002). "New phosphate langbeinites, K2MTi(PO4)3 (M = Er, Yb or Y), and an alternative description of the langbeinite framework". Acta Crystallographica B. 58 (5): 743–749. Bibcode:2002AcCrB..58..743N. doi:10.1107/S0108768102013782. PMC   2391006 . PMID   12324686.
  2. 1 2 3 Kumar, Sathasivam Pratheep; Gopal, Buvaneswari (October 2015). "New rare earth langbeinite phosphosilicates KBaREEZrP2SiO12 (REE: La, Nd, Sm, Eu, Gd, Dy) for lanthanide comprising nuclear waste storage". Journal of Alloys and Compounds. 657: 422–429. doi:10.1016/j.jallcom.2015.10.088.
  3. Guelylah, A.; G. Madariaga; W. Morgenroth; M. I. Aroyo; T. Breczewski; E. H. Bocanegra (2000). "X-ray structure determination of the monoclinic (121 K) and orthorhombic (85 K) phases of langbeinite-type dithallium dicadmium sulfate". Acta Crystallographica Section B. 56 (6): 921–935. Bibcode:2000AcCrB..56..921G. doi:10.1107/S0108768100009514. PMID   11099956.
  4. Guelylah, Abderrahim; Gotzon Madariaga (2003). "Dirubidium dicadmium sulfate at 293 K". Acta Crystallographica Section C. 59 (5): i32–i34. Bibcode:2003AcCrC..59I..32G. doi:10.1107/S0108270103007479. PMID   12743381.
  5. Guelylah, A.; M. I. Aroyo; J. M. Pérez-Mato (1996). "Microscopic distortion and order parameter in langbeinite K2Cd2(SO4)3". Phase Transitions. 59 (1–3): 155–179. Bibcode:1996PhaTr..59..155G. doi:10.1080/01411599608220042.
  6. Zemann, Anna; J. Zemann (1957). "Die Kristallstruktur von Langbeinit, K2Mg2(SO4)3". Acta Crystallographica. 10 (6): 409–413. Bibcode:1957AcCry..10..409Z. doi: 10.1107/S0365110X57001346 .
  7. Boujelben, Mohamed; Mohamed Toumi; Tahar Mhiri (2007). "Langbeinite-type Rb2Ca2(SO4)3". Acta Crystallographica Section E. 63 (7): i157. Bibcode:2007AcCrE..63I.157B. doi:10.1107/S1600536807027043.
  8. Martínez, M. L.; Rodriguez, A.; Mestres, L.; Solans, X.; Bocanegra, E. H. (November 1990). "Synthesis, crystal structure, and thermal studies of (NH4)2Cd2(SeO4)3·3H2O". Journal of Solid State Chemistry. 89 (1): 88–93. Bibcode:1990JSSCh..89...88M. doi:10.1016/0022-4596(90)90297-B.
  9. Солодовникова, С. Ф.; Солодовникова, В. А. (1997). "Новый тип строения в морфотропном ряду A+2M+2(MoO4)3: кристаллическая структура Rb2Cu2(MoO4)3" (PDF). ЖУРНАЛ структур. химии (in Russian). 38 (5): 914–921.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Kiselyova, Nadezhda (September 1997). "Property Predictions for Multicomponent Compounds". Russian Academy of Sciences. Archived from the original on July 6, 2013. Retrieved 6 July 2013.
  11. 1 2 Guelylah, A.; T. Breczewski; G. Madariaga (1996). "A New Langbeinite: Dipotassium Dimanganese Tetrafluoroberyllate". Acta Crystallographica Section C. 52 (12): 2951–2954. Bibcode:1996AcCrC..52.2951G. doi:10.1107/S0108270196008827.
  12. Pies, W.; A. Weiss (1973). "A458, I.1.3 Complex fluorides and fluorine double salts". Key Elements: F, Cl, Br, I. Landolt-Börnstein - Group III Condensed Matter. Vol. 7a. pp. 91–103. doi:10.1007/10201462_9. ISBN   978-3-540-06166-3.
  13. 1 2 Li, Hai-Yan; Dan Zhao (2011). "A new langbeinite-type phosphate: K2AlSn(PO4)3". Acta Crystallographica Section E. 67 (10): i56. Bibcode:2011AcCrE..67I..56L. doi:10.1107/S1600536811037263. PMC   3201338 . PMID   22058680.
  14. Gustafsson, Joacim C. M.; Stefan T. Norberg; Göran Svensson (2006). "The langbeinite type Rb2TiY(PO4)3". Acta Crystallographica Section E. 62 (7): i160–i162. Bibcode:2006AcCrE..62I.160G. doi:10.1107/S1600536806021635.
  15. Hidouri, Mourad; Hasna Jerbi; Mongi Ben Amara (2008). "The iron phosphate NaBaFe2(PO4)3". Acta Crystallographica Section E. 64 (8): i51. Bibcode:2008AcCrE..64I..51H. doi:10.1107/S1600536808023040. PMC   2961906 . PMID   21202994.
  16. Harrison, William T. A. (2010). "K2ScSn(AsO4)3: an arsenate-containing langbeinite". Acta Crystallographica Section C. 66 (7): i82–i84. Bibcode:2010AcCrC..66I..82H. doi:10.1107/S0108270110021670. PMID   20603547.
  17. Jona, F.; R. Pepinsky (1956). "Ferroelectricity in the Langbeinite System". Physical Review. 103 (4): 1126. Bibcode:1956PhRv..103.1126J. doi:10.1103/PhysRev.103.1126.
  18. McDowell, C. A.; P. Raghunathan; R. Srinivasan (1975). "Proton N.M.R. study of the dynamics of the ammonium ion in ferroelectric langbeinite, (NH4)2Cd2(SO4)3". Molecular Physics. 29 (3): 815–824. Bibcode:1975MolPh..29..815M. doi:10.1080/00268977500100721.
  19. 1 2 Moriyoshi, C.; E. Magome; K. Itoh (28 March 2007). "Structural Study of Langbeinite-type ((NH4)2Cd2(SO4)3) Crystal in the High Temperature Phase" (PDF). IMF-11. Retrieved 24 June 2013.
  20. Glogarová, M.; C. Frenzel; E. Hegenbarth (1972). "The Behaviour of (NH4)2Cd2(SO4)3 under Pressure". Physica Status Solidi B. 53 (1): 369–372. Bibcode:1972PSSBR..53..369G. doi:10.1002/pssb.2220530139.
  21. Hikita, Tomoyuki; Makoto Kitabatake; Takuro Ikeda (1979). "Hydrostatic Pressure Effect on the Phase Transition of K2Mn2(SO4)3". Journal of the Physical Society of Japan. 46 (2): 695–696. Bibcode:1979JPSJ...46..695H. doi:10.1143/JPSJ.46.695.
  22. 1 2 Brzina, B.; M. Glogarová (1972). "New ferroelectric langbeinite Tl2Cd2(SO4)3". Physica Status Solidi A. 11 (1): K39–K42. Bibcode:1972PSSAR..11...39.. doi:10.1002/pssa.2210110149.
  23. Deshmukh, B. T.; S. V. Bodade; S. V. Moharil (1986). "Thermoluminescence of K2Cd2(SO4)3". Physica Status Solidi A. 98 (1): 239–246. Bibcode:1986PSSAR..98..239D. doi:10.1002/pssa.2210980127.
  24. Panigrahi, A. K.; Dhoble, S. J.; Kher, R. S.; Moharil, S. V. (2003). "Thermo and mechanoluminescence of Dy3+ activated { K2Mg2(SO4)3 phosphor". Physica Status Solidi A. 198 (2): 322–328. Bibcode:2003PSSAR.198..322P. doi:10.1002/pssa.200306605.
  25. Léost, I.; Féraud, G.; Blanc-Valleron, M. M.; Rouchy, J. M. (2001). "First absolute dating of Miocene Langbeinite evaporites by 40Ar/39Ar laser step-heating: [K2Mg2(SO4)3] Stebnyk Mine (Carpathian Foredeep Basin)". Geophysical Research Letters. 28 (23): 4347–4350. Bibcode:2001GeoRL..28.4347L. doi: 10.1029/2001GL013477 .
  26. Franke, V.; E. Hegenbarth; B. Březina (1975). "Specific heat measurement on Tl2Cd2(SO4)3". Physica Status Solidi A. 28 (1): K77–K80. Bibcode:1975PSSAR..28...77F. doi:10.1002/pssa.2210280165.
  27. Abrahams, S. C.; Bernstein, J. L. (1977). "Piezoelectric langbeinite-type K2Cd2(SO4)3: Room temperature crystal structure and ferroelastic transformation". The Journal of Chemical Physics. 67 (5): 2146. Bibcode:1977JChPh..67.2146A. doi:10.1063/1.435101.
  28. Cao, Hongjie; Dalley, N. Kent; Boerio-Goates, Juliana (1993). "Calorimetric and structural studies of langbeinite-type Tl2Cd2(SO4)3". Ferroelectrics. 146 (1): 45–56. Bibcode:1993Fer...146...45C. doi:10.1080/00150199308008525.
  29. Sutera, A.; Nassau, K.; Abrahams, S. C. (1981). "Phase-transition variation with composition in solid solutions of K2Cd2(SO4)3 with Tl2Cd2(SO4)3". Journal of Applied Crystallography. 14 (5): 297–299. Bibcode:1981JApCr..14..297S. doi:10.1107/S0021889881009412.
  30. Percival, M. J. L. (1990). "Optical Absorption Spectroscopy of Doped Materials: The P213-P212121 Phase Transition in K2(Cd0.98Co0.02)2(SO4)3". Mineralogical Magazine. 54 (377): 525–535. Bibcode:1990MinM...54..525P. doi:10.1180/minmag.1990.054.377.01. S2CID   96797382.
  31. Zhou, Ya-Ping; Rui, Zhang; Hong-Wen, Wan; Zheng-Kun, Zhan; Ming-Fei, Xu (March 2001). "Thermochemical Studies on the Langbeinite-Type Double Sulfate Salts,(NH4)2Cd2(SO4)3 and K2Cd2(SO4)3". Acta Physico-Chimica Sinica (in Chinese). 17 (3): 247. doi: 10.3866/PKU.WHXB20010312 .
  32. Boerio-Goates, Juliana; Johanne I. Artman; Brian F. Woodfield (1990). "Heat capacity studies of phase transitions in langbeinites II. K2Mg2(SO4)3". Physics and Chemistry of Minerals. 17 (2): 173. Bibcode:1990PCM....17..173B. doi:10.1007/BF00199670. S2CID   95991273.
  33. Trussov, I. A.; Male, L. L.; Sanjuan, M. L.; Orera, A.; Slater, P. R. (April 2019). "Understanding the complex structural features and phase changes in Na2Mg2(SO4)3: A combined single crystal and variable temperature powder diffraction and Raman spectroscopy study". Journal of Solid State Chemistry. 272: 157–165. Bibcode:2019JSSCh.272..157T. doi:10.1016/j.jssc.2019.02.014. hdl: 10261/192264 . S2CID   104364241.
  34. 1 2 3 4 Speer, D.; Salje, E. (1986). "Phase transitions in langbeinites I: Crystal chemistry and structures of K-double sulfates of the langbeinite type M3++K2(SO4)3, M++=Mg, Ni, Co, Zn, Ca". Physics and Chemistry of Minerals. 13 (1): 17–24. Bibcode:1986PCM....13...17S. doi:10.1007/BF00307309. S2CID   96828689.
  35. 1 2 3 4 5 6 7 8 9 10 Burkov, V. I.; Perekalina, Z. B. (2001). "Gyrotropy of Cubic Langbeinite Crystals". Inorganic Materials. 37 (3): 203–212. doi:10.1023/A:1004165926149. S2CID   92506742.
  36. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (June 1968). Standard X-ray Diffraction Powder Patterns (PDF) (Monograph). NBS Monograph 5. Vol. Section 6 – Data for 60 Substances. National Bureau of Standards. p. 40. doi: 10.6028/NBS.MONO.25-6 . Retrieved 2021-03-23.
  37. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1969). Standard X-ray Diffraction Powder Patterns (PDF) (Monograph). NBS Monograph 5. Vol. Section 7 – Data for 81 Substances. Washington D.C.: National Bureau of Standards. p. 50. doi: 10.6028/NBS.MONO.25-7 . Retrieved 2021-03-24.
  38. 1 2 Swanson et al. 1969 , p. 50
  39. "Efremovite: Efremovite mineral information and data". www.mindat.org.
  40. 1 2 3 4 Kahrizi, Mojtaba; Steinitz, M. O. (1988). "Phase transitions and thermal expansion in langbeinite type compounds". Solid State Communications. 66 (4): 375–378. Bibcode:1988SSCom..66..375K. doi:10.1016/0038-1098(88)90860-5.
  41. 1 2 3 4 5 6 7 8 9 AtomWork materials database at NIMS
  42. 1 2 3 Swanson et al. 1969 , p. 37
  43. "Calciolangbeinite" (PDF). Mineralogical Society of America. 13 June 2015. Retrieved 29 February 2016.
  44. "Calciolangbeinite: Mineral information, data and localities". www.mindat.org.
  45. Pekov, Igor V.; Zubkova, Natalia V.; Galuskina, Irina O.; Kusz, Joachim; Koshlyakova, Natalia N.; Galuskin, Evgeny V.; Belakovskiy, Dmitry I.; Bulakh, Maria O.; Vigasina, Marina F.; Chukanov, Nikita V.; Britvin, Sergey N. (2022-01-28). "Calciolangbeinite- O , a natural orthorhombic modification of K 2 Ca 2 (SO 4 ) 3 , and the langbeinite–calciolangbeinite solid-solution system". Mineralogical Magazine. 86 (4): 557–569. Bibcode:2022MinM...86..557P. doi:10.1180/mgm.2021.95. ISSN   0026-461X. S2CID   246406414.
  46. Swanson et al. 1969 , p. 39
  47. 1 2 3 Swanson et al. 1969 , p. 48
  48. Swanson et al. 1969 , p. 12
  49. Gattow, G.; Zemann, J. (1958). "Über Doppelsulfate vom Langbeinit-Typ, A2+B22+(SO4)3". Zeitschrift für Anorganische und Allgemeine Chemie (in German). 293 (5–6): 233–240. doi:10.1002/zaac.19582930502.
  50. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H. (September 1970). Standard X-ray Diffraction Powder Patterns (PDF) (Monograph). NBS Monograph 5. Vol. Section 8 – Data for 81 Substances. Washington D.C.: National Bureau of Standards. p. 7. doi: 10.6028/NBS.MONO.25-8 . Retrieved 2021-03-24.
  51. 1 2 Swanson et al. 1970 , p. 7
  52. 1 2 3 4 Tudo, Joseph; Laplace, Laplace (July 1977). "Les sulfates doubles de vanadium et d'ammonium. I. Sur la schoenite de vanadium II et ammonium". Bulletin de la Société Chimique de France: Première Partie (7/8): 653–655.
  53. NIMS search result
  54. Bellanca, A. (1947). Sulla simmetria della manganolangbeinite/ Atti Accad. Nazi. Lincei Rend. Classe Sci. Fis. Mat. Nat. 2, 451–455.
  55. 1 2 Swanson et al. 1968 , p. 43
  56. Yamada, Noboru; Maeda, Masaki; Adachi, Hideaki (1981). "Structures of langbeinite-type dipotassium dimanganese sulfate in cubic and orthorhombic phases". Journal of the Physical Society of Japan. 50 (3): 907–913. Bibcode:1981JPSJ...50..907Y. doi:10.1143/jpsj.50.907.
  57. Swain, Diptikanta; Guru Row, T. N. (2006). "Rb2Mn2(SO4)3, a new member of the langbeinite family". Acta Crystallographica Section E. 62 (6): m138–m139. Bibcode:2006AcCrE..62R.138S. doi:10.1107/S1600536806019490.
  58. 1 2 3 Swanson et al. 1969 , p. 52
  59. Hikita, T. (2005). "43B-6 (NH4)2Mn2(SO4)3-(NH4)2Mn2(SeO4)3". (NH4)2SO4 family ... K3BiCl6·2KCl·KH3F4. Landolt-Börnstein - Group III Condensed Matter. Vol. 36B2. pp. 1–3. doi:10.1007/10552342_84. ISBN   9783540313533.{{cite book}}: |work= ignored (help)
  60. 1 2 3 Swanson et al. 1969 , p. 76
  61. Kasatkin, Anatoly V.; Plášil, Jakub; Škoda, Radek; Campostrini, Italo; Chukanov, Nikita V.; Agakhanov, Atali A.; Karpenko, Vladimir Yu.; Belakovskiy, Dmitriy I. (14 December 2020). "Ferroefremovite, (NH4)2Fe2+2(SO4)3, a new mineral from Solfatara di Pozzuoli, Campania, Italy". The Canadian Mineralogist. 59: 59–68. doi:10.3749/canmin.1900085. S2CID   230591609.
  62. Swanson et al. 1968 , p. 35
  63. 1 2 3 Swanson et al. 1970 , p. 59
  64. Swanson et al. 1970 , p. 85
  65. 1 2 3 Jayakumar, V. S.; I. Hubert Joe; G. Aruldhas (1995). "IR and single crystal Raman spectra of langbeinities M2Ni2(SO4)3 (M = NH4, K)". Ferroelectrics. 165 (1): 307–318. Bibcode:1995Fer...165..307J. doi:10.1080/00150199508228311.
  66. 1 2 3 Swanson et al. 1968 , p. 46
  67. 1 2 3 Swanson et al. 1970 , p. 72
  68. 1 2 Swanson et al. 1968 , p. 54
  69. Swanson et al. 1969 , p. 34
  70. 1 2 3 Swanson et al. 1969 , p. 45
  71. Swanson et al. 1970 , p. 83
  72. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Le Fur, Y.; Aléonard, S (August 1969). "Etude d'orthofluoroberyllates MeI2MeII2(BeF4)3 de structure langbeinite". Materials Research Bulletin. 4 (8): 601–615. doi:10.1016/0025-5408(69)90121-4.
  73. Shen, Y.; Yang, Y.; Zhao, S.; Li, X.; Ding, Q.; Li, Y.; Liu, S.; Lin, Z.; Luo, J. (2018). "CCDC Number: 1862371". Inorganic Chemistry. 57 (21): 13087–13091. doi:10.1021/acs.inorgchem.8b02491. PMID   30299091. S2CID   52941066.
  74. Shen, Yaoguo; Liu, Zhiqun; Yu, Hualiang; Zhou, Bi (April 2020). "Aliovalent-substituted synthesis for a non-centrosymmetric phosphate with enhanced nonlinear-optical response". Journal of Solid State Chemistry. 288: 121361. Bibcode:2020JSSCh.28821361S. doi:10.1016/j.jssc.2020.121361. S2CID   216369312.
  75. Fu, Yun-Long; Xu, Zhi-Wei; Ren, Jia-Lin; Ng, Seik Weng (2005). "Langbeinite-type mixed-valence (NH4)(H3O)Ti[III]Ti[IV](PO4)3". Acta Crystallographica Section E. 61 (8): i158–i159. doi:10.1107/S1600536805021392.
  76. 1 2 3 Leclaire, A.; Benmoussa, A.; Borel, M. M.; Grandin, A.; Raveau, B. (February 1989). "K2−xTi2(PO4)3 with 0 ≤ x ≤ 0.5: A mixed-valence nonstoichiometric titanophosphate with the langbeinite structure". Journal of Solid State Chemistry. 78 (2): 227–231. Bibcode:1989JSSCh..78..227L. doi:10.1016/0022-4596(89)90101-1.
  77. 1 2 Isasi, J (2 August 2000). "Synthesis, structure and conductivity study of new monovalent phosphates with the langbeinite structure". Solid State Ionics. 133 (3–4): 303–313. doi:10.1016/S0167-2738(00)00677-9.
  78. 1 2 Ogorodnyk, Ivan V.; Zatovsky, Igor V.; Slobodyanik, Nikolay S.; Baumer, Vyacheslav N.; Shishkin, Oleg V. (November 2006). "Synthesis, structure and magnetic properties of new phosphates K2Mn0.5Ti1.5(PO4)3 and K2Co0.5Ti1.5(PO4)3 with the langbeinite structure". Journal of Solid State Chemistry. 179 (11): 3461–3466. Bibcode:2006JSSCh.179.3461O. doi:10.1016/j.jssc.2006.07.015.
  79. Strutynska, Nataliia Yu.; Bondarenko, Marina A.; Ogorodnyk, Ivan V.; Zatovsky, Igor V.; Slobodyanik, Nikolay S.; Baumer, Vyacheslav N.; Puzan, Anna N. (May 2015). "Interaction in the molten system Rb2 O-P2 O5 -TiO -NiO. Crystal structure of the langbeinite-related Rb2Ni0.5Ti1.5(PO4)". Crystal Research and Technology. 50 (7): 549–555. doi:10.1002/crat.201500050. S2CID   98316028.
  80. Zhao, Dan; Zhang, Hao; Huang, Shu-Ping; Zhang, Wei-Long; Yang, Song-Lin; Cheng, Wen-Dan (2009). "Crystal and band structure of K2AlTi(PO4)3 with the langbeinite-type structure". Journal of Alloys and Compounds. 477 (1–2): 795–799. doi:10.1016/j.jallcom.2008.10.124.
  81. Ding, Jimin; Zhu, Pengfei; Li, Ziqing; Wang, Zhenyan; Ai, Li; Zhao, Jianfu; Yu, Fapeng; Duan, Xiulan; Jiang, Huaidong (July 2021). "Synthesis, electronic structure and upconversion photoluminescence of langbeinite-type K2TiYb(PO4)3 microcrystals". Optik. 244: 167549. Bibcode:2021Optik.244p7549D. doi:10.1016/j.ijleo.2021.167549.
  82. 1 2 3 Chen, Shuang; Hoffmann, Stefan; Weichert, Katja; Maier, Joachim; Prots, Yurii; Zhao, Jing-Tai; Kniep, Rüdiger (2011). "Li(H2O)2−x[Zr2(PO4)3]: A Li-Filled Langbeinite Variant (x= 0) as a Precursor for a Metastable Dehydrated Phase (x= 2)". Chemistry of Materials. 23 (6): 1601–1606. doi:10.1021/cm103487w.
  83. Marshenya, Sergey N.; Scherbakov, Alexey G.; Dembitskiy, Artem D.; Golubnichiy, Alexander A.; Trussov, Ivan A.; Savina, Aleksandra A.; Kazakov, Sergey M.; Aksyonov, Dmitry A.; Antipov, Evgeny V.; Fedotov, Stanislav S. (2024). "NaZr 2 (PO 4 ) 3 – a cubic langbeinite-type sodium-ion solid conductor". Dalton Transactions. doi:10.1039/D4DT02288B. ISSN   1477-9226.
  84. Ogorodnyk, I. V.; Zatovsky, I. V.; Baumer, V. N.; Slobodyanik, N. S.; Shishkin, O. V. (2007). "Synthesis and crystal structure of langbeinite related mixed-metal phosphates K1.822Nd0.822Zr1.178(PO4)3 and K2LuZr(PO4)3". Crystal Research and Technology. 42 (11): 1076–1081. Bibcode:2007CryRT..42.1076O. doi:10.1002/crat.200710961. S2CID   197180278.
  85. 1 2 Trubach, I. G.; Beskrovnyi, A. I.; Orlova, A. I.; Orlova, V. A.; Kurazhkovskaya, V. S. (2004). "Synthesis and structural study of Rb2FeZr(PO4)3 phosphate with langbeinite structure". Crystallography Reports. 49 (6): 895–898. Bibcode:2004CryRp..49..895T. doi:10.1134/1.1828132. S2CID   101730864.
  86. Orlova, Albina I.; Trubach, Ilya G.; Kurazhkovskaya, Victoria S.; Pertierra, Pilar (July 2003). "Synthesis, characterization, and structural study of K2FeZrP3O12 with the langbeinite structure". Journal of Solid State Chemistry. 173 (2): 314–318. Bibcode:2003JSSCh.173..314O. doi:10.1016/S0022-4596(03)00101-4.
  87. 1 2 Asabina, E. A.; Pet'kov, V. I.; Gobechiya, E. R.; Kabalov, Yu. K.; Pokholok, K. V.; Kurazhkovskaya, V. S. (19 May 2009). "Synthesis and crystal structure of phosphates A2FeTi(PO4)3 (A = Na, Rb)". Russian Journal of Inorganic Chemistry. 53 (1): 40–47. doi:10.1134/S0036023608010075. S2CID   96452463.
  88. 1 2 Wulff, H.; Guth, U.; Loescher, B. (10 January 2013). "The Crystal Structure of K2REZr(PO4)3(RE = Y, Gd) Isotypic with Langbeinite". Powder Diffraction. 7 (2): 103–106. Bibcode:1992PDiff...7..103W. doi:10.1017/S0885715600018339. S2CID   100926565.
  89. Ogorodnyk, Ivan V.; Zatovsky, Igor V.; Slobodyanik, Nikolay S. (2009). "Rietveld refinement of langbeinite-type K2YHf(PO4)3". Acta Crystallographica Section E. 65 (8): i63–i64. Bibcode:2009AcCrE..65I..63O. doi:10.1107/S1600536809027573. PMC   2977454 . PMID   21583298.
  90. 1 2 Chen, Shuang; Hoffmann, Stefan; Borrmann, Horst; Kniep, Rüdiger (2011). "Crystal structure of a lithium-filled langbeinite variant, Li(H2O)2[Hf2(PO4)3]" (PDF). Z. Kristallogr. 226 (3): 299–300. doi: 10.1524/ncrs.2011.0132 . S2CID   97687920 . Retrieved 30 June 2013.
  91. Losilla, E (2 September 1998). "NASICON to scandium wolframate transition in Li1+xMxHf2-x(PO4)3 (M=Cr, Fe): structure and ionic conductivity". Solid State Ionics. 112 (1–2): 53–62. doi:10.1016/S0167-2738(98)00207-0.
  92. 1 2 3 4 Orlova, A. I.; Koryttseva, A. K.; Bortsova, E. V.; Nagornova, S. V.; Kazantsev, G. N.; Samoilov, S. G.; Bankrashkov, A. V.; Kurazhkovskaya, V. S. (2006). "Crystallochemical modeling, synthesis, and study of new tantalum and niobium phosphates with a framework structure". Crystallography Reports. 51 (3): 357–365. Bibcode:2006CryRp..51..357O. doi:10.1134/S1063774506030011. S2CID   93802518.
  93. Xue, Ya-Li; Zhao, Dan; Zhang, Shi-Rui; Li, Ya-Nan; Fan, Yan-Ping (30 January 2019). "A new disordered langbeinite-type compound, K2Tb1.5Ta0.5P3O12, and Eu3+ -doped multicolour light-emitting properties". Acta Crystallographica Section C. 75 (2): 213–220. doi:10.1107/S2053229619000998. PMID   30720461. S2CID   73439880.
  94. 1 2 3 4 5 6 7 8 9 10 11 12 Koryttseva, A. K.; Orlova, A. I.; Nagornova, S. V.; Sedova, N. A.; Beskrovnyi, A. I. (April 2022). "Preparation and Structure of New Orthophosphates Isostructural with the Mineral Langbeinite: A2R1.5Ta0.5(PO4)3 (A = K, Rb; R = Ga, Gd, Dy, Ho, Er, Yb)". Inorganic Materials. 58 (4): 356–363. doi:10.1134/S0020168522040069. ISSN   0020-1685. S2CID   249706245.
  95. 1 2 3 4 Orlova, A. I.; Kitaev, D. B. (2005). "Anhydrous Lanthanide and Actinide(III) and (IV) Orthophosphates Me_m(PO4)_n. Synthesis, Crystallization, Structure, and Properties". Radiochemistry. 47 (1): 14–30. doi:10.1007/s11137-005-0041-6. S2CID   98748508.
  96. Kumar, Sathasivam Pratheep; Gopal, Buvaneswari (2014). "Synthesis and leachability study of a new cesium immobilized langbeinite phosphate: KCsFeZrP3O12". Journal of Alloys and Compounds. 615: 419–423. doi:10.1016/j.jallcom.2014.06.192. ISSN   0925-8388.
  97. 1 2 3 El Hafid, Hassan; Velázquez, Matias; El Jazouli, Abdelaziz; Wattiaux, Alain; Carlier, Dany; Decourt, Rodolphe; couzi, Michel; Goldner, Philippe; Delmas, Claude (2014). "Magnetic, Mössbauer and optical spectroscopic properties of the AFe3O(PO4)3 (A=Ca,Sr,Pb) series of powder compounds". Solid State Sciences. 36: 52–61. Bibcode:2014SSSci..36...52E. doi:10.1016/j.solidstatesciences.2014.07.011. ISSN   1293-2558.
  98. Hidouri, Mourad; López, María Luisa; Pico, Carlos; Wattiaux, Alain; Amara, Mongi Ben (December 2012). "Synthesis and characterization of a new iron phosphate KSrFe2(PO4)3 with a langbeinite type structure". Journal of Molecular Structure. 1030: 145–148. Bibcode:2012JMoSt1030..145H. doi:10.1016/j.molstruc.2012.04.002.
  99. Shpanchenko, R. V.; Lapshina, O. A.; Antipov, E. V.; Hadermann, J.; Kaul, E. E.; Geibel, C. (2005). "New lead vanadium phosphate with langbeinite-typestructure: Pb1.5V2(PO4)3". Materials Research Bulletin. 40 (9): 1569–1576. doi:10.1016/j.materresbull.2005.04.037.
  100. 1 2 3 4 Rangan, K. Kasthuri; Gopalakrishnan, J. (March 1994). "New Titanium-Vanadium Phosphates of Nasicon and Langbeinite Structures, and Differences between the Two Structures toward Deintercalation of Alkali Metal". Journal of Solid State Chemistry. 109 (1): 116–121. Bibcode:1994JSSCh.109..116R. doi:10.1006/jssc.1994.1080.
  101. David, Rénald; Kabbour, Houria; Filimonov, Dmitry; Huvé, Marielle; Pautrat, Alain; Mentré, Olivier (2014). "Reversible Topochemical Exsolution of Iron in BaFe2+2(PO4)2". Angewandte Chemie. 126 (49): 13583–13588. Bibcode:2014AngCh.12613583D. doi:10.1002/ange.201404476. ISSN   0044-8249.
  102. Pet'kov, V. I.; Markin, A. V.; Alekseev, A. A.; Smirnova, N. N. (3 February 2018). "Heat capacity measurements on Ba1.5Fe2(PO4)3 and its thermodynamic functions". Journal of Thermal Analysis and Calorimetry. 132: 353–364. doi:10.1007/s10973-017-6925-9. S2CID   103383453.
  103. Jiao, Mengmeng; Lv, Wenzhen; Lv, Wei; Zhao, Qi; Shao, Baiqi; You, Hongpeng (14 January 2015). "Optical Properties and Energy Transfer of Novel KSrSc2(PO4)3:Ce3+/Eu2+/Tb3+ Phosphor for White Light Emitting Diodes". Dalton Trans. 44 (9): 4080–4087. doi:10.1039/C4DT03906H. PMID   25623365.
  104. Strutynska, Nataliia Yu.; Bondarenko, Marina A.; Ogorodnyk, Ivan V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S. (7 February 2015). "Crystal structure of langbeinite-related RbKCoTi(PO4)3". Acta Crystallographica Section E. 71 (3): 251–253. doi:10.1107/S2056989015001826. PMC   4350725 . PMID   25844179.
  105. 1 2 3 Chornii, Vitalii; Hizhnyi, Yuriy; Nedilko, Sergiy G.; Terebilenko, Kateryna; Zatovsky, I.; Ogorodnyk, Ivan; Boyko, Volodymyr (June 2015). "Synthesis, Crystal Structure, Luminescence and Electronic Band Structure of K2BiZr(PO4)3 Phosphate Compound". Solid State Phenomena. 230: 55–61. doi:10.4028/www.scientific.net/SSP.230.55. S2CID   101559407.
  106. Jiao, Mengmeng; Lü, Wei; Shao, Baiqi; Zhao, Lingfei; You, Hongpeng (20 July 2015). "Synthesis, Structure, and Photoluminescence Properties of Novel KBaSc2(PO4)3 :Ce/Eu/Tb Phosphors for White-Light-Emitting Diodes". ChemPhysChem. 16 (12): 2663–2669. doi:10.1002/cphc.201500387. PMID   26202348.
  107. Wu, Di; Si, Jiayong; Tang, Jiamin; Li, Guihua; Cai, Gemei (September 2022). "Structure and tunable luminescence of Tm3+/Dy3+ doped KBaIn2(PO4)3 phosphors with high thermal stability". Journal of Luminescence. 252: 119291. Bibcode:2022JLum..252k9291W. doi:10.1016/j.jlumin.2022.119291. S2CID   252195013.
  108. Battle, Peter D.; Cheetham, Anthony K.; Harrison, William T. A.; Long, Gary J. (March 1986). "The crystal structure and magnetic properties of the synthetic langbeinite KBaFe2(PO4)3". Journal of Solid State Chemistry. 62 (1): 16–25. Bibcode:1986JSSCh..62...16B. doi:10.1016/0022-4596(86)90211-2.
  109. Battle, P. D.; Gibb, T. C.; Nixon, S.; Harrison, W. T. A. (July 1988). "The magnetic properties of the synthetic langbeinite KBaCr2(PO4)3". Journal of Solid State Chemistry. 75 (1): 21–29. Bibcode:1988JSSCh..75...21B. doi:10.1016/0022-4596(88)90299-x.
  110. Pet'kov, V. I.; Asabina, E. A.; Markin, A. V.; Alekseev, A. A.; Smirnova, N. N. (22 February 2016). "Thermodynamic investigation of Rb2FeTi(PO4)3 phosphate of langbeinite structure". Journal of Thermal Analysis and Calorimetry. 124 (3): 1535–1544. doi:10.1007/s10973-016-5319-8. S2CID   100260297.
  111. 1 2 3 4 5 6 7 8 9 10 11 Pet'kov, V. I.; Alekseev, A. A.; Asabina, E. A.; Borovikova, E. Yu.; Koval'skii, A. M. (6 August 2017). "Synthesis, structure formation, and thermal expansion of A+M2+MgE4+(PO4)3". Russian Journal of Inorganic Chemistry. 62 (7): 870–878. doi:10.1134/S0036023617070178. S2CID   103520759.
  112. Zhang, G.X.; Zhang, J.; Liu, Y.J.; Si, J.Y.; Tao, X.M.; Cai, G.M. (May 2019). "Structure and luminescence properties of multicolor phosphors with excellent thermal stability based on a new phosphate Ba3In4(PO4)6". Journal of Alloys and Compounds. 797: 775–785. doi:10.1016/j.jallcom.2019.05.059. S2CID   182926209.
  113. Droß, Thomas; Glaum, Robert (20 March 2004). "The langbeinite-type barium vanadium(III) orthophosphate, Ba3V4(PO4) 6". Acta Crystallographica Section E. 60 (4): i58–i60. Bibcode:2004AcCrE..60I..58D. doi:10.1107/S1600536804005689. S2CID   61648994.
  114. 1 2 Balaji, Daneshwaran; Mandlimath, Triveni Rajashekhar; Chen, Jie; Matsushita, Yoshitaka; Kumar, Sathasivam Pratheep (2020-09-02). "Langbeinite Phosphates KPbM2(PO4)3 (M = Cr, Fe): Synthesis, Structure, Thermal Expansion, and Magnetic Properties Investigation". Inorganic Chemistry. 59 (18): 13245–13253. doi:10.1021/acs.inorgchem.0c01597. ISSN   0020-1669. PMID   32878438. S2CID   221478204.
  115. Zhou, Liang; Butenko, Denys S.; Ogorodnyk, Ivan V.; Klyui, Nickolai I.; Zatovsky, Igor V. (2020-10-01). "Rietveld refinement of the langbeinite-type phosphate K2Ni0.5Hf1.5(PO4)3". Acta Crystallographica Section E. 76 (10): 1634–1637. Bibcode:2020AcCrE..76.1634Z. doi:10.1107/S2056989020012062. ISSN   2056-9890. PMC   7534254 . PMID   33117578.
  116. Indumathi, K.; Tamilselvan, S.; Annadurai, G.; Ramalingam, Gopal; Muhammad, G. Shakil; Alam, Mohammed Mujahid; David, A. Duke John; Ayyar, Manikandan (January 2024). "Photoluminescence and structural properties of NaBaBi2[PO4]3 an Eulytite-type orthophosphate doped with Sm3+ as new orange-red emitting phosphors". Journal of Materials Science: Materials in Electronics. 35 (2). doi:10.1007/s10854-024-11936-7. S2CID   267054200.
  117. 1 2 Balaji, Daneshwaran; Mandlimath, Triveni Rajashekhar; Kumar, Sathasivam Pratheep (February 2020). "Influence of tin substitution on negative thermal expansion of K2Zr2-xSnxP2SiO12 (x = 0 - 2) phosphosilicates ceramics". Ceramics International. 46 (9): 13877–13885. doi:10.1016/j.ceramint.2020.02.181. S2CID   213437625.
  118. 1 2 Balaji, Daneshwaran; Kumar, Sathasivam Pratheep (July 2021). "Langbeinite phosphosilicates K2-xCsxZr2P2SiO12 (x = 0, 0.5, 1.0, 1.5, 2.0) for cesium encapsulation; synthesis, chemical durability and thermal expansion study". Ceramics International. 47 (20): 28951–28959. doi:10.1016/j.ceramint.2021.07.055.
  119. 1 2 3 4 5 Kumar, Sathasivam Pratheep; Gopal, Buvaneswari (February 2016). "New rare earth langbeinite phosphosilicates KBaREEZrP 2 SiO 12 (REE: La, Nd, Sm, Eu, Gd, Dy) for lanthanide comprising nuclear waste storage". Journal of Alloys and Compounds. 657: 422–429. doi:10.1016/j.jallcom.2015.10.088.
  120. Kanunov, A. E.; Asabina, E. A.; Orlova, A. I. (January 2016). "Preparation and X-ray diffraction study of phosphate sulfates M2MgTi(SO4)(PO4)2". Russian Journal of General Chemistry. 86 (1): 18–25. doi:10.1134/S1070363216010047. ISSN   1070-3632. S2CID   102011872.
  121. 1 2 3 Slobodyanik, Nikolay S.; Terebilenko, Kateryna V.; Ogorodnyk, Ivan V.; Zatovsky, Igor V.; Seredyuk, Maksym; Baumer, Vyacheslav N.; Gütlich, Philipp (2012-02-06). "K 2 M III 2 (M VI O 4 )(PO 4 ) 2 (M III = Fe, Sc; M VI = Mo, W), Novel Members of the Lagbeinite-Related Family: Synthesis, Structure, and Magnetic Properties". Inorganic Chemistry. 51 (3): 1380–1385. doi:10.1021/ic201575v. ISSN   0020-1669. PMID   22260084.
  122. 1 2 3 Nabar, M. A.; Phanasgaonkar, D. S. (1 October 1980). "Preparation and X-ray powder diffraction studies of triple orthovanadates having langbeinite structure". Journal of Applied Crystallography. 13 (5): 450–451. Bibcode:1980JApCr..13..450N. doi: 10.1107/s0021889880012514 .
  123. Harrison, William T. A. (17 June 2010). "K2ScSn(AsO4)3 : an arsenate-containing langbeinite". Acta Crystallographica Section C. 66 (7): i82–i84. Bibcode:2010AcCrC..66I..82H. doi:10.1107/S0108270110021670. PMID   20603547.
  124. Rouse, Jessica (January 2010). "Compound IX:hydrated ammonium zirconium arsenate". Synthesis and Characterisation of Lanthanide and Other Inorganic Framework Materials (Thesis). University of Southampton, Faculty of Engineering, Science and Mathematics, School of Chemistry. p. 127. Retrieved 10 November 2015.
  125. Martínez, M. L.; Rodriguez, A.; Mestres, L.; Solans, X.; Bocanegra, E. H. (November 1990). "Synthesis, crystal structure, and thermal studies of (NH4)2Cd2(SeO4)3·3H2O". Journal of Solid State Chemistry. 89 (1): 88–93. Bibcode:1990JSSCh..89...88M. doi:10.1016/0022-4596(90)90297-B.
  126. Kohler, K.; Franke, W. (1 August 1964). "(NH4)2Mn2(SeO4)3, Ein Doppelselenat mit Langbeiniestruktur". Acta Crystallographica (in German). 17 (8): 1088–1089. Bibcode:1964AcCry..17.1088K. doi: 10.1107/s0365110x64002833 .
  127. Tsyrenova, G. D.; N. N. Pavlova (2011). "Synthesis, structure, and electrical and acoustic properties of Cs2Cd2(MoO4)3". Inorganic Materials. 47 (7): 786–790. doi:10.1134/S0020168511070235. S2CID   97308112.
  128. Yudin, Vasiliy N.; Zolotova, Evgeniya S.; Solodovnikov, Sergey F.; Solodovnikova, Zoya A.; Korolkov, Iliya V.; Stefanovich, Sergey Yu.; Kuchumov, Boris M. (23 November 2018). "Synthesis, structure and conductivity of alluaudite-related phases in the Na2MoO4-Cs2MoO4-CoMoO4 system". European Journal of Inorganic Chemistry. 2019 (2): 277–286. doi:10.1002/ejic.201801307. S2CID   105126213.
  129. Kubíčková, Lenka; Weber, Anna Katharina; Panthöfer, Martin; Calder, Stuart; Möller, Angela (2024-07-02). "Cs 2 Fe 2 (MoO 4 ) 3 ─A Strongly Frustrated Magnet with Orbital Degrees of Freedom and Magnetocaloric Properties". Chemistry of Materials. doi: 10.1021/acs.chemmater.4c01262 . ISSN   0897-4756. PMC   11270738 .
  130. Zolotova, E. S.; Solodovnikova, Z. A.; Ayupov, B. M.; Solodovnikov, S. F. (16 August 2011). "Phase formation in the Li2MoO4-A2MoO4-NiMoO4 (A = K, Rb, Cs) systems, the crystal structure of Cs2Ni2(MoO4)3, and color characteristics of alkali-metal nickel molybdates". Russian Journal of Inorganic Chemistry. 56 (8): 1216–1221. doi:10.1134/S0036023611080298. S2CID   96079887.
  131. Yu, Yang; Liu, Dan; Hu, Wei-wei; Li, Jia; Peng, Yu; Zhou, Qi; Yang, Fen; Li, Guang-hua; Shi, Zhan (2012). "Synthesis, Structure and Characterization of Three Metal Molybdate Hydrates: Fe(H2O)2(MoO4)2·H3O, NaCo2(MoO4)2(H3O2) and Mn2(MoO4)3·2H3O". Chem Res. Chinese Universities. 28 (2): 186–190. Retrieved 10 November 2015.
  132. Gulyaeva, Oksana A.; Solodovnikova, Zoya A.; Solodovnikov, Sergey F.; Yudin, Vasiliy N.; Zolotova, Evgeniya S.; Komarov, Vladislav Yu. (April 2019). "Subsolidus phase relations and structures of solid solutions in the systems K2MoO4–Na2MoO4–MMoO4 (M = Mn, Zn)". Journal of Solid State Chemistry. 272: 148–156. Bibcode:2019JSSCh.272..148G. doi:10.1016/j.jssc.2019.02.010. S2CID   104469445.
  133. 1 2 Han, Shujuan; Wang, Ying; Jing, Qun; Wu, Hongping; Pan, Shilie; Yang, Zhihua (2015). "Effect of the cation size on the framework structures of magnesium tungstate, A4Mg(WO4)3 (A = Na, K), R2Mg2 (WO4)3 (R = Rb, Cs)". Dalton Trans. 44 (12): 5810–5817. doi:10.1039/c5dt00332f. PMID   25715112.
  134. Swain, Diptikanta; T. N. Guru Row (2005). "Dirubidium tricadmium tetrakis(sulfate) pentahydrate" (PDF). Acta Crystallographica Section E. 61 (8): i163–i164. Bibcode:2005AcCrE..61I.163S. doi:10.1107/S1600536805021252.
  135. Yamada, N.; Tomoyuki Hikita; Kazuhiro Yamada (1981). "Pyroelectric properties of langbeinite-type K2Zn2(SO4)3". Ferroelectrics. 33 (1): 59–61. Bibcode:1981Fer....33...59Y. doi:10.1080/00150198108008070.
  136. Kohler, K.; W. Franke (1964). "(NH4)2Mn2(SeO4)3, Ein Doppelselenat mit Langbeiniestruktur". Acta Crystallographica. 17 (8): 1088–1089. Bibcode:1964AcCry..17.1088K. doi: 10.1107/S0365110X64002833 .
  137. Orlova, A. I.; V. A. Orlova; M. P. Orlova; D. M. Bykov; S. V. Stefanovskii; O. I. Stefanovskaya; B. S. Nikonov (2006). "The crystal-chemical principle in designing mineral-like phosphate ceramics for immobilization of radioactive waste". Radiochemistry. 48 (4): 330–339. doi:10.1134/S1066362206040035. S2CID   97539628.
  138. Slobodyanik, M. S.; N. S. Slobodyanik; K. V. Terebilenko; I. V. Ogorodnyk; I. V. Zatovsky; M. Seredyuk; V. N. Baumer; P. Gütlich (2012). "K2MIII2(MVIO4)(PO4)2 (MIII = Fe, Sc; MVI = Mo, W), Novel Members of the Lagbeinite-Related Family: Synthesis, Structure, and Magnetic Properties". Inorg. Chem. 51 (5): 1380–1385. doi:10.1021/ic201575v. PMID   22260084.