Laser bonding

Last updated

Laser bonding is a marking technique that uses lasers to bond an additive marking substance to a substrate.

Contents

First invented in the mid 1990s by Essilor International, this patented method [1] produces permanent marks on metal, glass, ceramic and plastic parts for a diverse range of industrial and artistic applications, ranging from aerospace and medical to the awards and engraving industries. It differs from the more widely known techniques of laser engraving and laser ablation in that it is an additive process, adding material to the substrate surface instead of removing it.

Laser bonding has been achieved by Nd:YAG, CO2 laser, Fiber laser and Diode-pumped solid-state laser and can be accomplished using other forms of radiant energy.

The laser bonding process

Mark quality depends on a variety of factors, including the substrate used, marking speed, laser spot size, beam overlap, materials thickness, and laser parameters. Laser bonding materials may be applied by various methods, including a brush on technique, spraying, pad printing, screen printing, roll coating, tape, and others.

The marking process generally comprises three steps:

1. Application of the marking material.

2. Irradiating the marking material with a laser in the form of the desired mark.

3. Removal of excess, unbonded material.

The resulting marking is permanently bonded to the substrate, and in most cases it is as durable as the substrate itself. [2]

The durability of laser bonded markings

Markings placed on stainless steel are extremely durable and have survived such testing as abrasion resistance, chemical resistance, outdoor exposure, extreme heat, extreme cold, acids, bases and various organic solvents.

Marks on glass have been tested for resistance to acids, bases and scratching.

NASA's International Space Station, or ISS, was home to aluminum squares laser marked with CerMark® marking material for almost four years. These squares were part of the Material International Space Station Experiment, or MISSE.

In this experiment test markings were applied to coupons made of materials commonly used in the construction of the external components used on space transportation vehicles, satellites and space stations. Markings applied using a wide range of different methods and techniques, including laser bonding. The material test coupons were then affixed to spaces provided on test panels, which were then installed onto trays which were attached to the ISS during a space walk conducted during the STS-105 Mission flown on August 10, 2001. The trays were positioned on the ISS so that they could expect to receive the maximum amount of impact damage and exposure to a high degree of atomic oxygen and UV radiation.

The experiment was recovered on July 30, 2005 during STS-114 and returned to earth on August 9, 2005. The markings, DataMatrix two dimensional bar codes, were evaluated and found to be readable and visually looked as good as the day they were placed in orbit. [3]

The laser bonding process is outlined and specified in both military [4] and NASA [5] marking specifications and standards. Laser bonding is also a preferred technique for use in the United States Department of Defense "Item Unique Identification" system (IUID).

See also

Related Research Articles

<span class="mw-page-title-main">Welding</span> Fabrication or sculptural process for joining materials

Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature techniques such as brazing and soldering, which do not melt the base metal.

<span class="mw-page-title-main">Printed circuit board</span> Board to support and connect electronic components

A printed circuit board is a medium used to connect electronic components to one another in a controlled manner. It takes the form of a laminated sandwich structure of conductive and insulating layers: each of the conductive layers is designed with an artwork pattern of traces, planes and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. Electrical components may be fixed to conductive pads on the outer layers in the shape designed to accept the component's terminals, generally by means of soldering, to both electrically connect and mechanically fasten them to it. Another manufacturing process adds vias: plated-through holes that allow interconnections between layers.

<i>Kibō</i> (ISS module) Japanese ISS module, used on ISS press conferences

The Japanese Experiment Module (JEM), nicknamed Kibō, is a Japanese science module for the International Space Station (ISS) developed by JAXA. It is the largest single ISS module, and is attached to the Harmony module. The first two pieces of the module were launched on Space Shuttle missions STS-123 and STS-124. The third and final components were launched on STS-127.

<span class="mw-page-title-main">STS-72</span> 1996 American crewed spaceflight to retrieve the Space Flyer Unit

STS-72 was a Space Shuttle Endeavour mission to capture and return to Earth a Japanese microgravity research spacecraft known as Space Flyer Unit (SFU). The mission launched from Kennedy Space Center, Florida on 11 January 1996.

<span class="mw-page-title-main">STS-94</span> 1997 American crewed spaceflight to conduct space experiments

STS-94 was a mission of the United States Space Shuttle Columbia, launched on 1 July 1997.

<span class="mw-page-title-main">STS-105</span> 2001 American crewed spaceflight to the ISS

STS-105 was a mission of the Space Shuttle Discovery to the International Space Station, launched from Kennedy Space Center, Florida, 10 August 2001. This mission was Discovery's final mission until STS-114, because Discovery was grounded for a refit, and then all Shuttles were grounded in the wake of the Columbia disaster. The refit included an update of the flight deck to the glass cockpit layout, which was already installed on Atlantis and Columbia.

<span class="mw-page-title-main">Peter Wisoff</span> American astronaut (born 1958)

Peter Jeffrey Kelsay Wisoff is an American physicist and former NASA astronaut. Wisoff qualified as mission specialist and flew in four Space Shuttle missions, with his first launch in 1993 and his last in 2000.

<span class="mw-page-title-main">Laser engraving</span> Engraving objects using lasers

Laser engraving is the practice of using lasers to engrave an object. Laser marking, on the other hand, is a broader category of methods to leave marks on an object, which in some cases, also includes color change due to chemical/molecular alteration, charring, foaming, melting, ablation, and more. The technique does not involve the use of inks, nor does it involve tool bits which contact the engraving surface and wear out, giving it an advantage over alternative engraving or marking technologies where inks or bit heads have to be replaced regularly.

<span class="mw-page-title-main">STS-121</span> 2006 American crewed spaceflight to the ISS

STS-121 was a 2006 NASA Space Shuttle mission to the International Space Station (ISS) flown by Space ShuttleDiscovery. The main purposes of the mission were to test new safety and repair techniques introduced following the Columbia disaster of February 2003 as well as to deliver supplies, equipment and German European Space Agency (ESA) astronaut Thomas Reiter to the ISS.

<span class="mw-page-title-main">Space manufacturing</span> Production of manufactured goods in an environment outside a planetary atmosphere

Space manufacturing is the production of tangible goods beyond Earth. Since most production capabilities are limited to low Earth orbit, the term in-orbit manufacturing is also frequently used.

<span class="mw-page-title-main">Mir Environmental Effects Payload</span> NASA materials science experiments aboard the Russian space station

The Mir Environmental Effects Payload (MEEP) was a set of four experiments installed on the Russian space station Mir from March 1996 to October 1997 to study the effects of space debris impacts and exposure to the space environment on a variety of materials. The materials used in the experiments were being considered for use on the International Space Station, and by exposing them at a similar orbital altitude to that flown by the ISS, the experiments provided an assessment of the performance of those materials in a similar space environment. MEEP also fulfilled the need to examine the occurrence and effects of man-made debris and natural micrometeoroids through capture and impact studies. The experiments were installed on the Mir docking module during STS-76, and retrieved during STS-86.

<span class="mw-page-title-main">STS-123</span> 2008 American crewed spaceflight to the ISS

STS-123 was a Space Shuttle mission to the International Space Station (ISS) which was flown by Space Shuttle Endeavour. STS-123 was the 1J/A ISS assembly mission. The original launch target date was February 14, 2008, but after the delay of STS-122, the shuttle was launched on March 11, 2008. It was the twenty-fifth shuttle mission to visit the ISS, and delivered the first module of the Japanese laboratory, Japanese Experiment Module (Kibō), and the Canadian Special Purpose Dexterous Manipulator, (SPDM) Dextre robotics system to the station. The mission duration was 15 days and 18 hours, and it was the first mission to fully utilize the Station-to-Shuttle Power Transfer System (SSPTS), allowing space station power to augment the shuttle power systems. The mission set a record for a shuttle's longest stay at the ISS.

<span class="mw-page-title-main">Physical vapor deposition</span> Method of coating solid surfaces with thin films

Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a vapor phase and then back to a thin film condensed phase. The most common PVD processes are sputtering and evaporation. PVD is used in the manufacturing of items which require thin films for optical, mechanical, electrical, acoustic or chemical functions. Examples include semiconductor devices such as thin-film solar cells, microelectromechanical devices such as thin film bulk acoustic resonator, aluminized PET film for food packaging and balloons, and titanium nitride coated cutting tools for metalworking. Besides PVD tools for fabrication, special smaller tools used mainly for scientific purposes have been developed.

<i>Mir</i> Docking Module Russian storage and crew access module for the Shuttle-Mir Program

The Stykovochnyy Otsek, GRAU index 316GK, otherwise known as the Mir Docking Module or SO, was the sixth module of the Russian space station Mir, launched in November 1995 aboard the Space ShuttleAtlantis. The module, built by RKK Energia, was designed to help simplify space shuttle dockings to Mir during the Shuttle-Mir programme, preventing the need for the periodic relocation of the Kristall module necessary for dockings prior to the compartment's arrival. The module was also used to transport two new photovoltaic arrays to the station, as a mounting point for external experiments, and as a storage module when not in use for dockings.

<span class="mw-page-title-main">Materials International Space Station Experiment</span> NASA science observatories on the orbital research platform

The Materials International Space Station Experiment (MISSE) is a series of experiments mounted externally on the International Space Station (ISS) that investigates the effects of long-term exposure of materials to the harsh space environment.

<span class="mw-page-title-main">STS-134</span> 2011 American crewed spaceflight to the ISS and final flight of Space Shuttle Endeavour

STS-134 was the penultimate mission of NASA's Space Shuttle program and the 25th and last spaceflight of Space ShuttleEndeavour. This flight delivered the Alpha Magnetic Spectrometer and an ExPRESS Logistics Carrier to the International Space Station. Mark Kelly served as the mission commander. STS-134 was expected to be the final Space Shuttle mission if STS-135 did not receive funding from Congress. However, in February 2011, NASA stated that STS-135 would fly "regardless" of the funding situation. STS-135, flown by Atlantis, took advantage of the processing for STS-335, the Launch on Need mission that would have been necessary if the STS-134 crew became stranded in orbit.

<span class="mw-page-title-main">Selective laser melting</span> 3D printing technique

Selective laser melting (SLM) is one of many proprietary names for a metal additive manufacturing (AM) technology that uses a bed of powder with a source of heat to create metal parts. Also known as direct metal laser sintering (DMLS), the ASTM standard term is powder bed fusion (PBF). PBF is a rapid prototyping, 3D printing, or additive manufacturing technique designed to use a high power-density laser to melt and fuse metallic powders together.

Cladding is the bonding together of dissimilar metals. It is different from fusion welding or gluing as a method to fasten the metals together. Cladding is often achieved by extruding two metals through a die as well as pressing or rolling sheets together under high pressure.

<span class="mw-page-title-main">Made In Space</span> Engineering company

Made In Space, Inc. (MIS) is an American company specializing in the engineering and manufacturing of three-dimensional printers for use in microgravity. Headquartered in Jacksonville, Florida, Made In Space's 3D printer was the first manufacturing device used in space.

References

  1. Patents FR 273917B1,"Method For Laser Marking of s Glass Object", wo 1996032221A1,"Method for laser marking a glass object", EP EP0820363B1,"Method for laser marking a glass object", ES 2146396T3,"Procedure for the Laser Marking of a Glass Object", DE 69607336T2,"Laser Marking Method of a workpiece of glass", and AU 701407B2,"Method for laser marking a glass object".
  2. Paul W. Harrison (July 2006), White Paper: "Product Identification in Automated Manufacturing" (PDF), Los Angeles, CA, retrieved 29 January 2015
  3. Report: "Marking Tests to Certify Part Identification Marking Processes for use in Low Earth Orbit (LEO)", Roxby, D., Siemens Symbology Research Center, 5000 Bradford Drive NW, Suite A, Huntsville, Alabama 35805, Oct. 11, 2005.
  4. MIL-STD 130M DOD Marking Standard, p.24, Table II
  5. NASA HDBK-6003 NASA Marking Handbook, Laser Bonding Section 5.1.5, p.15