Latrunculin

Last updated
Latrunculin
Latrunculin A structure.svg
Latrunculin A
Latrunculin B.svg
Latrunculin B
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
DrugBank
PubChem CID
UNII
  • A:InChI=1S/C22H31NO5S/c1-15-7-5-3-4-6-8-16(2)11-20(24)27-18-12-17(10-9-15)28-22(26,13-18)19-14-29-21(25)23-19/h3-5,7,11,15,17-19,26H,6,8-10,12-14H2,1-2H3,(H,23,25)/b4-3+,7-5-,16-11-/t15-,17-,18-,19+,22-/m1/s1
    Key: DDVBPZROPPMBLW-IZGXTMSKSA-N
  • B:InChI=1S/C20H29NO5S/c1-13-5-3-4-6-14(2)9-18(22)25-16-10-15(8-7-13)26-20(24,11-16)17-12-27-19(23)21-17/h3,5,9,13,15-17,24H,4,6-8,10-12H2,1-2H3,(H,21,23)/b5-3-,14-9-/t13-,15-,16-,17+,20-/m1/s1
    Key: NSHPHXHGRHSMIK-JRIKCGFMSA-N
  • A:C[C@H]/1CC[C@@H]2C[C@H](C[C@@](O2)([C@@H]3CSC(=O)N3)O)OC(=O)/C=C(\CC/C=C/C=C1)/C
  • B:C[C@H]/1CC[C@@H]2C[C@H](C[C@@](O2)([C@@H]3CSC(=O)N3)O)OC(=O)/C=C(\CC/C=C1)/C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

The latrunculins are a family of natural products and toxins produced by certain sponges, including genus Latrunculia and Negombata , whence the name is derived. It binds actin monomers near the nucleotide binding cleft with 1:1 stoichiometry and prevents them from polymerizing. Administered in vivo, this effect results in disruption of the actin filaments of the cytoskeleton, and allows visualization of the corresponding changes made to the cellular processes. This property is similar to that of cytochalasin, but has a narrow effective concentration range. [1] Latrunculin has been used to great effect in the discovery of cadherin distribution regulation and has potential medical applications. [2] Latrunculin A, a type of the toxin, was found to be able to make reversible morphological changes to mammalian cells by disrupting the actin network. [3]

Contents

Latrunculin A:

Molecular Formula:C22H31NO5S [4]
Molecular Weight:421.552 g/mol [4]

Target and functions

Gelsolin - Latrunculin A causes end- blocking; this protein binds to the barbed sides of the actin filaments which accelerates nucleation. This calcium-regulated protein also plays a role in assembly and disassembly of cilia [4] which plays a crucial role in handedness.

Latrunculin B:

Molecular Formula:C20H29NO5S [5]
Molecular Weight:395.514 g/mol

Target and Function

Actin- Latrunculin B makes up the structure of the actin fibers.

Protein spire homolog 2- needed for cell division, vesicle transport within the actin filament and is essential for the formation of the cleavage formation during cell division [6] .

History

Latrunculin is a toxin that is produced by sponges. The red-coloured Latrunculia Magnifica Keller is an abundant sponge in the gulf of Eilat and the gulf of Suez [7] in the red sea, where it lives at a depth of 6–30 meters. [8] The toxin was discovered around 1970. Researchers observed that the red-coloured sponges, Latrunculia Magnifica Keller, were never damaged or eaten by fishes, while others were. Furthermore, when researchers squeezed the sponges in the sea, they observed that a red fluid came out. Fishes nearby immediately fled the surrounding area when the sponge secreted the fluid. These were the first indications that these sponges produced a toxin. Later this hypothesis was confirmed by squeezing the sponge in an aquarium with fish, whereupon the fish showed a loss of balance and severe bleeding, dying within only 4–6 minutes. [8] Similar effects were observed when the toxin was injected in mice.

Latrunculin makes up to 0.35% of the dry weight of the sponge. [7] There are two main forms of the toxin, A and B. Latrunculin A is only present in sponges which live in the gulf of Suez while latrunculin B only exist in sponges in the gulf of Eilat. Why this is the case is still under investigation. [7]

Structure

Figure 2 relative activity of Latrunculin analogues The micro filament disrupting activity (at 10 mM effective concentration). Abbreviations: +- weak effect, + significant effect, ++ strong effect, +++ very strong effect (less than 20% viable cells). Activity of latrunculin analogues.gif
Figure 2 relative activity of Latrunculin analogues The micro filament disrupting activity (at 10 μM effective concentration). Abbreviations: ± weak effect, + significant effect, ++ strong effect, +++ very strong effect (less than 20% viable cells).

There are several isomers of latrunculin, A, B, C, D, G, H, M, S and T. The most common structures are latrunculin A and B. Their formulas are respectively C22H31NO5S and C20H29NO5S. The macrolactone ring on top that contains double bonds is a structural feature of the latrunculin molecules. The side chain contains an acylthiazolidinone substitute. Besides these natural occurring forms, scientist have made synthetic forms with different toxic strengths. Figure 2 shows some of these forms with their relative ability to disrupt microfilament activity. Semisynthetic forms that contained N-alkylated derivates were inactive. [9]

Mechanism of action

Latrunculin A and latrunculin B affect polymerization of actin. Latrunculin binds actin monomers near the nucleotide binding cleft with 1:1 stoichiometry and prevents them from polymerizing. [1] The nucleotide monomers are prevented from dissociation from the nucleotide binding cleft, thus preventing polymerizing. [10]

Experimental evidence shows that latruculin-A is biologically active in the solvent DMSO, but not in aqueous solutions, as demonstrated in cell culture and in brain tissue [11] probably due to cellular permeation.

When actin is impaired due to latrunculin, Shiga toxins have a better chance of infiltrating the intestinal epithelial monolayer in E. coli, which may cause a higher chance of generating gastrointestinal illnesses. [12]

It seems that actin monomers are more sensitive to bind latrunculin A than to bind Latrunculin B. [13] In other words, latrunculin A is a more potent toxin. Latrunculin B is inactivated faster than latrunculin A. [14]

The prevention of polymerizing of the actin filaments causes reversible changes in the morphology of mammalian cells. [15] Lantranculin interferes with the structure of the cytoskeleton in rats. [16]

After latrunculin B exposure, mouse fibroblasts grow bigger and PtK2 kidney cells from a potoroo stem produced long, branched extensions. [17] The extensions seem to be an accumulation of actin monomers.

Metabolism

Yeast cells in absence of the proteins osh3 or osh5 demonstrated hypersensitivity to latrunculin B. [18] The osh proteins are homologous to OSBP generated enzymes that appear in mammals, indicating that these might play a role in the toxicokinetics of latrunculins.

Yeast mutants that are resistant to latrunculin show a mutation, D157E, that initiates a hydrogen bond with latrunculin. [10] Other yeast mutants adjust the binding site, thus making it resistant to latrunculin.

No research has been done to figure out how the biotransformation of latrunculin works in eukaryotic cells. However, research suggests that it is the unaltered form of latrunculin that causes toxic effects. [3]

Toxicity

As latrunculin inhibits actin polymerization and actomyosin contractile ability, exposure to latrunculin may result in cellular relaxation, expansion of drainage tissues and decreased outflow resistance in e.g. the trabecular meshwork.

Plant

Latrunculin B causes marked and dose-dependent reductions in pollen germination frequency and pollen tube growth rate. [19]

Adding latrunculin B to solutions of pollen F-actin produced a rapid decrease in the total amount of polymer, the extent of depolymerization increasing with the concentrations of the toxic. The concentration of latrunculin B required for half-maximal inhibition of pollen germination is 40 to 50 nM, whereas pollen tube extension is much more sensitive, requiring only 5 to 7 nM LATB for half-maximal inhibition. The disruption of germination and pollen tube growth by latrunculin B is partially reversible at low concentrations. (<30 nM). [19]

Animal

Squeezing Latrunculia magnifica into aquarium with fishes causes their almost immediate agitation, followed by hemorrhage, loss of balance and death in 4–6 minutes. [20]

Latrunculin A has been used as acrosome reaction inhibitor of guinea pig in laboratory conditions. [21]

Human

Lat-A-induces reduction of actomyosin contractility. This is associated with trabecular meshwork porous expansion without evidence of reduced structural extracellular matrix protein expression or cellular viability. [22] In high doses, latrunculin can induce acute cell injury and programmed cell death through activating the caspase-3/7 pathway. [20]

Lethal doses

TDLO - Lowest Published Toxic Dose

LD50median Lethal Dose [23]

IndicatorSpeciesDose
Oral TDLOMan1,14 ml/kg, 650 mg/kg
Oral LD50Rat7,06 mg/kg
Oral LD50Mouse3,45 g/kg, 10,5 ml/kg
Oral LD50Rabbit6,30 mg/kg
Inhalation LC50Rat6h: 5,900 mg/m3

10h: 20,000 ppm

Inhalation LCLOMouse7h: 29,300 ppm
Inhalation TCLOHuman20m: 2,500 mg/m3

30m: 1,800 ppm

Irritation eyesRabbit24h: 500 mg
Irritation skinRabbit24h: 20 mg

Applications

In nature, latrunculins are used by the sponges themselves as a defense mechanism, and for the same purpose are also sequestered by certain nudibranchs. [24]

Latrunculins are produced for fundamental research and have potential medical applications as latrunculins and their derivatives show antiangionic, antiproliferative, antimicrobial and antimetastatic activities. [2]

Defense mechanism

Like many other sessile organisms, sponges are rich of secondary metabolites with toxic properties and most of them, including Latrunculin, have a defense role against predators, competitors and epibionts. [25]

The sponges themselves are not damaged by latrunculin. As a measure against self-toxination, they keep the latrunculin in membrane-bound vacuoles, that also function as secretory and storage vesicles. These vacuoles are free of actin and prevent the latrunculin from entering the cytosol where it would damage actin. [25] After production in the choanocytes, the latrunculin is transferred via the archeocytes to the vulnerable areas of the sponges where defense is needed, such as injured or regenerating sites. [25]

Sequestering by nudibranchs

Sea slugs of the genus Chromodoris sequester different toxics from the sponges that they eat as defensive metabolites, including latrunculin. They selectively transfer and store latrunculin in the sites of the mantle that are most exposed to potential predators. [24] It is thought that the digestive system of the nudibranchs plays an important role in the detoxification. [24]

In 2015, the discovery that five closely related sea slugs of the genus Chromodoris all use latrunculin as defense, indicates that the toxic might be used via Müllerian mimicry. [24]

Research

Latrunculins are used for fundamental research like cytoskeleton studies. Many functions of actin have been determined by using latrunculins to block actin polymerization followed by examining the effects on the cell. Using this method, the importance of actin for the polarized localization of proteins, polarized exocytosis and the maintenance of cell polarity have been shown. [26]

In the field of Neuroscience, latrunculin has been used to demonstrate the role of actin in regulating voltage-gated ion channels in different nerve cells, [27] showing that latrunculin treatment can alter the electrical activity of nerve cells. [27] [28] Latrunculin shows a dose-dependent inhibition of K+ currents and acute application can induce the firing of multiple action potentials , which could underlie a mechanism of defense via nociceptors. [28] In addition, latrunculin-A was used to demonstrate the role of dentritic spine neck shrinkage for the induction of synaptic plasticity. [11]

Medical applications

Latrunculin A and B and derivatives have potential as novel chemotherapeutic agents. [2] [29] The potential use of latrunculin as growth inhibitors of tumor cells has already been investigated for certain forms of gastric cancer, [20] metastatic breast cancer [29] and prostate tumors. [30] In lower doses, latrunculin can be used to decrease disaggregation and cell migration, thereby preventing invasive activities of tumor cells. [30] In higher doses, latrunculin can induce acute cell injury and programmed cell death through activating the caspase-3/7 pathway, and thus be used to kill tumor cells. [20] Latrunculin A and its 17-O-[N-(benzyl)carbamate ( suppress hypoxia-induced HIF-1 activation in T47D breast tumor cells. [30]

Latrunculin also is a potential therapeutic for ocular hypertension and glaucoma. Latrunculin A and B are shown to disrupt the actin cytoskeleton of the trabecular meshwork that is important for regulating humor outflow resistance and thereby intraocular pressure. [31] [32] By cellular relaxation and loosened cell-cell junctions, latrunculin can increase humor outflow facility. The first human trial of lantruculin B as treatment of ocular hypertension and glaucoma showed significantly lower intraocular pressure in patients. [32]

Related Research Articles

<span class="mw-page-title-main">Cytoskeleton</span> Network of filamentous proteins that forms the internal framework of cells

The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is composed of similar proteins in the various organisms. It is composed of three main components, microfilaments, intermediate filaments and microtubules, and these are all capable of rapid growth or disassembly dependent on the cell's requirements.

<span class="mw-page-title-main">Microfilament</span> Filament in the cytoplasm of eukaryotic cells

Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin, but are modified by and interact with numerous other proteins in the cell. Microfilaments are usually about 7 nm in diameter and made up of two strands of actin. Microfilament functions include cytokinesis, amoeboid movement, cell motility, changes in cell shape, endocytosis and exocytosis, cell contractility, and mechanical stability. Microfilaments are flexible and relatively strong, resisting buckling by multi-piconewton compressive forces and filament fracture by nanonewton tensile forces. In inducing cell motility, one end of the actin filament elongates while the other end contracts, presumably by myosin II molecular motors. Additionally, they function as part of actomyosin-driven contractile molecular motors, wherein the thin filaments serve as tensile platforms for myosin's ATP-dependent pulling action in muscle contraction and pseudopod advancement. Microfilaments have a tough, flexible framework which helps the cell in movement.

<span class="mw-page-title-main">Pollen tube</span> Tubular structure to conduct male gametes of plants to the female gametes

A pollen tube is a tubular structure produced by the male gametophyte of seed plants when it germinates. Pollen tube elongation is an integral stage in the plant life cycle. The pollen tube acts as a conduit to transport the male gamete cells from the pollen grain—either from the stigma to the ovules at the base of the pistil or directly through ovule tissue in some gymnosperms. In maize, this single cell can grow longer than 12 inches (30 cm) to traverse the length of the pistil.

<span class="mw-page-title-main">Actin</span> Family of proteins

Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.

<span class="mw-page-title-main">MreB</span>

MreB is a protein found in bacteria that has been identified as a homologue of actin, as indicated by similarities in tertiary structure and conservation of active site peptide sequence. The conservation of protein structure suggests the common ancestry of the cytoskeletal elements formed by actin, found in eukaryotes, and MreB, found in prokaryotes. Indeed, recent studies have found that MreB proteins polymerize to form filaments that are similar to actin microfilaments. It has been shown to form multilayer sheets comprising diagonally interwoven filaments in the presence of ATP or GTP.

<span class="mw-page-title-main">Phalloidin</span> Chemical compound

Phalloidin belongs to a class of toxins called phallotoxins, which are found in the death cap mushroom (Amanita phalloides). It is a rigid bicyclic heptapeptide that is lethal after a few days when injected into the bloodstream. The major symptom of phalloidin poisoning is acute hunger due to the destruction of liver cells. It functions by binding and stabilizing filamentous actin (F-actin) and effectively prevents the depolymerization of actin fibers. Due to its tight and selective binding to F-actin, derivatives of phalloidin containing fluorescent tags are used widely in microscopy to visualize F-actin in biomedical research.

<span class="mw-page-title-main">Cytochalasin B</span> Chemical compound

Cytochalasin B, the name of which comes from the Greek cytos (cell) and chalasis (relaxation), is a cell-permeable mycotoxin. It was found that substoichiometric concentrations of cytochalasin B (CB) strongly inhibit network formation by actin filaments. Due to this, it is often used in cytological research. It inhibits cytoplasmic division by blocking the formation of contractile microfilaments. It inhibits cell movement and induces nuclear extrusion. Cytochalasin B shortens actin filaments by blocking monomer addition at the fast-growing end of polymers. Cytochalasin B inhibits glucose transport and platelet aggregation. It blocks adenosine-induced apoptotic body formation without affecting activation of endogenous ADP-ribosylation in leukemia HL-60 cells. It is also used in cloning through nuclear transfer. Here enucleated recipient cells are treated with cytochalasin B. Cytochalasin B makes the cytoplasm of the oocytes more fluid and makes it possible to aspirate the nuclear genome of the oocyte within a small vesicle of plasma membrane into a micro-needle. Thereby, the oocyte genome is removed from the oocyte, while preventing rupture of the plasma membrane.

<span class="mw-page-title-main">Profilin</span>

Profilin is an actin-binding protein involved in the dynamic turnover and reconstruction of the actin cytoskeleton. It is found in most eukaryotic organisms. Profilin is important for spatially and temporally controlled growth of actin microfilaments, which is an essential process in cellular locomotion and cell shape changes. This restructuring of the actin cytoskeleton is essential for processes such as organ development, wound healing, and the hunting down of infectious intruders by cells of the immune system.

<span class="mw-page-title-main">Growth cone</span> Large actin extension of a developing neurite seeking its synaptic target

A growth cone is a large actin-supported extension of a developing or regenerating neurite seeking its synaptic target. It is the growth cone that drives axon growth. Their existence was originally proposed by Spanish histologist Santiago Ramón y Cajal based upon stationary images he observed under the microscope. He first described the growth cone based on fixed cells as "a concentration of protoplasm of conical form, endowed with amoeboid movements". Growth cones are situated on the tips of neurites, either dendrites or axons, of the nerve cell. The sensory, motor, integrative, and adaptive functions of growing axons and dendrites are all contained within this specialized structure.

<span class="mw-page-title-main">Cell cortex</span> Layer on the inner face of a cell membrane

The cell cortex, also known as the actin cortex, cortical cytoskeleton or actomyosin cortex, is a specialized layer of cytoplasmic proteins on the inner face of the cell membrane. It functions as a modulator of membrane behavior and cell surface properties. In most eukaryotic cells lacking a cell wall, the cortex is an actin-rich network consisting of F-actin filaments, myosin motors, and actin-binding proteins. The actomyosin cortex is attached to the cell membrane via membrane-anchoring proteins called ERM proteins that plays a central role in cell shape control. The protein constituents of the cortex undergo rapid turnover, making the cortex both mechanically rigid and highly plastic, two properties essential to its function. In most cases, the cortex is in the range of 100 to 1000 nanometers thick.

Cytochalasins are fungal metabolites that have the ability to bind to actin filaments and block polymerization and the elongation of actin. As a result of the inhibition of actin polymerization, cytochalasins can change cellular morphology, inhibit cellular processes such as cell division, and even cause cells to undergo apoptosis. Cytochalasins have the ability to permeate cell membranes, prevent cellular translocation and cause cells to enucleate. Cytochalasins can also have an effect on other aspects of biological processes unrelated to actin polymerization. For example, cytochalasin A and cytochalasin B can also inhibit the transport of monosaccharides across the cell membrane, cytochalasin H has been found to regulate plant growth, cytochalasin D inhibits protein synthesis and cytochalasin E prevents angiogenesis.

<span class="mw-page-title-main">Major sperm protein</span>

Major sperm protein (MSP) is a nematode specific small protein of 126 amino acids with a molecular weight of 14 kDa. It is the key player in the motility machinery of nematodes that propels the crawling movement/motility of nematode sperm. It is the most abundant protein present in nematode sperm, comprising 15% of the total protein and more than 40% of the soluble protein. MSP is exclusively synthesized in spermatocytes of the nematodes. The MSP has two main functions in the reproduction of the helminthes: i) as cytosolic component it is responsible for the crawling movement of the mature sperm, and ii) once released, it acts as hormone on the female germ cells, where it triggers oocyte maturation and stimulates the oviduct wall to contract to bring the oocytes into position for fertilization. MSP has first been identified in Caenorhabditis elegans.

<span class="mw-page-title-main">Protein filament</span> Long chain of protein monomers

In biology, a protein filament is a long chain of protein monomers, such as those found in hair, muscle, or in flagella. Protein filaments form together to make the cytoskeleton of the cell. They are often bundled together to provide support, strength, and rigidity to the cell. When the filaments are packed up together, they are able to form three different cellular parts. The three major classes of protein filaments that make up the cytoskeleton include: actin filaments, microtubules and intermediate filaments.

<span class="mw-page-title-main">Cytochalasin D</span> Chemical compound

Cytochalasin D is a member of the class of mycotoxins known as cytochalasins. Cytochalasin D is an alkaloid produced by Helminthosporium and other molds.

<span class="mw-page-title-main">Cortactin</span> Protein-coding gene in the species Homo sapiens

Cortactin is a monomeric protein located in the cytoplasm of cells that can be activated by external stimuli to promote polymerization and rearrangement of the actin cytoskeleton, especially the actin cortex around the cellular periphery. It is present in all cell types. When activated, it will recruit Arp2/3 complex proteins to existing actin microfilaments, facilitating and stabilizing nucleation sites for actin branching. Cortactin is important in promoting lamellipodia formation, invadopodia formation, cell migration, and endocytosis.

<span class="mw-page-title-main">Actin assembly-inducing protein</span>

The Actin assembly-inducing protein (ActA) is a protein encoded and used by Listeria monocytogenes to propel itself through a mammalian host cell. ActA is a bacterial surface protein comprising a membrane-spanning region. In a mammalian cell the bacterial ActA interacts with the Arp2/3 complex and actin monomers to induce actin polymerization on the bacterial surface generating an actin comet tail. The gene encoding ActA is named actA or prtB.

Actin remodeling is the biochemical process that allows for the dynamic alterations of cellular organization. The remodeling of actin filaments occurs in a cyclic pattern on cell surfaces and exists as a fundamental aspect to cellular life. During the remodeling process, actin monomers polymerize in response to signaling cascades that stem from environmental cues. The cell's signaling pathways cause actin to affect intracellular organization of the cytoskeleton and often consequently, the cell membrane. Again triggered by environmental conditions, actin filaments break back down into monomers and the cycle is completed. Actin-binding proteins (ABPs) aid in the transformation of actin filaments throughout the actin remodeling process. These proteins account for the diverse structure and changes in shape of Eukaryotic cells. Despite its complexity, actin remodeling may result in complete cytoskeletal reorganization in under a minute.

<span class="mw-page-title-main">Arp2/3 complex</span> Macromolecular complex

Arp2/3 complex is a seven-subunit protein complex that plays a major role in the regulation of the actin cytoskeleton. It is a major component of the actin cytoskeleton and is found in most actin cytoskeleton-containing eukaryotic cells. Two of its subunits, the Actin-Related Proteins ARP2 and ARP3, closely resemble the structure of monomeric actin and serve as nucleation sites for new actin filaments. The complex binds to the sides of existing ("mother") filaments and initiates growth of a new ("daughter") filament at a distinctive 70 degree angle from the mother. Branched actin networks are created as a result of this nucleation of new filaments. The regulation of rearrangements of the actin cytoskeleton is important for processes like cell locomotion, phagocytosis, and intracellular motility of lipid vesicles.

<span class="mw-page-title-main">Cytoskeletal drugs</span> Substances or medications that interact with actin or tubulin

Cytoskeletal drugs are small molecules that interact with actin or tubulin. These drugs can act on the cytoskeletal components within a cell in three main ways. Some cytoskeletal drugs stabilize a component of the cytoskeleton, such as taxol, which stabilizes microtubules, or Phalloidin, which stabilizes actin filaments. Others, such as Cytochalasin D, bind to actin monomers and prevent them from polymerizing into filaments. Drugs such as demecolcine act by enhancing the depolymerisation of already formed microtubules. Some of these drugs have multiple effects on the cytoskeleton: for example, Latrunculin both prevents actin polymerization as well as enhancing its rate of depolymerization. Typically the microtubule targeting drugs can be found in the clinic where they are used therapeutically in the treatment of some forms of cancer. As a result of the lack of specificity for specific type of actin, the use of these drugs in animals results in unacceptable off-target effects. Despite this, the actin targeting compounds are still useful tools that can be used on a cellular level to help further our understanding of how this complex part of the cells' internal machinery operates. For example, Phalloidin that has been conjugated with a fluorescent probe can be used for visualizing the filamentous actin in fixed samples.

Kathryn Rachel Ayscough is a professor of molecular cell biology and head of the department of biomedical science at the University of Sheffield. She was awarded the 2002 Society for Experimental Biology President's Medal. Her research investigates the role of the actin cytoskeleton in membrane trafficking and cell organisation.

References

  1. 1 2 Braet F, De Zanger R, Jans D, Spector I, Wisse E (September 1996). "Microfilament-disrupting agent latrunculin A induces and increased number of fenestrae in rat liver sinusoidal endothelial cells: comparison with cytochalasin B". Hepatology. 24 (3): 627–35. doi:10.1002/hep.510240327. PMID   8781335. S2CID   30443511.
  2. 1 2 3 El Sayed KA, Youssef DT, Marchetti D (February 2006). "Bioactive natural and semisynthetic latrunculins". Journal of Natural Products. 69 (2): 219–23. doi:10.1021/np050372r. PMID   16499319.
  3. 1 2 Coué M, Brenner SL, Spector I, Korn ED (March 1987). "Inhibition of actin polymerization by latrunculin A". FEBS Letters. 213 (2): 316–8. doi: 10.1016/0014-5793(87)81513-2 . PMID   3556584.
  4. 1 2 3 Pubchem. "Latrunculin A". pubchem.ncbi.nlm.nih.gov. Retrieved 2018-04-26.
  5. Pubchem. "Latrunculin A". pubchem.ncbi.nlm.nih.gov. Retrieved 2018-04-26.[ verification needed ]
  6. Pubchem. "Latrunculin A". pubchem.ncbi.nlm.nih.gov. Retrieved 2018-04-26.[ verification needed ]
  7. 1 2 3 Groweiss A, Shmueli U, Kashman Y (1983-10-01). "Marine toxins of Latrunculia magnifica". The Journal of Organic Chemistry. 48 (20): 3512–3516. doi:10.1021/jo00168a028.
  8. 1 2 Kashman V, Groweiss A, Shmueli U (January 1980). "Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge". Tetrahedron Letters. 21 (37): 3629–3632. doi:10.1016/0040-4039(80)80255-3.
  9. Maier ME (May 2015). "Design and synthesis of analogues of natural products". Organic & Biomolecular Chemistry. 13 (19): 5302–43. doi: 10.1039/C5OB00169B . PMID   25829247.
  10. 1 2 Morton WM, Ayscough KR, McLaughlin PJ (June 2000). "Latrunculin alters the actin-monomer subunit interface to prevent polymerization". Nature Cell Biology. 2 (6): 376–8. doi:10.1038/35014075. hdl: 1842/757 . PMID   10854330. S2CID   1803612.
  11. 1 2 Tazerart S, Mitchell DE, Miranda-Rottmann S, Araya R (August 2020). "A spike-timing-dependent plasticity rule for dendritic spines". Nature Communications. 11 (1): 4276. Bibcode:2020NatCo..11.4276T. doi:10.1038/s41467-020-17861-7. PMC   7449969 . PMID   32848151.
  12. Maluykova I, Gutsal O, Laiko M, Kane A, Donowitz M, Kovbasnjuk O (June 2008). "Latrunculin B facilitates Shiga toxin 1 transcellular transcytosis across T84 intestinal epithelial cells". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1782 (6): 370–7. doi:10.1016/j.bbadis.2008.01.010. PMC   2509583 . PMID   18342638.
  13. Wakatsuki T, Schwab B, Thompson NC, Elson EL (March 2001). "Effects of cytochalasin D and latrunculin B on mechanical properties of cells". Journal of Cell Science. 114 (Pt 5): 1025–36. doi: 10.1242/jcs.114.5.1025 . PMID   11181185.
  14. Spector I, Shochet NR, Blasberger D, Kashman Y (1989). "Latrunculins--novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D". Cell Motility and the Cytoskeleton. 13 (3): 127–44. doi:10.1002/cm.970130302. PMID   2776221.
  15. Pendleton A, Koffer A (January 2001). "Effects of latrunculin reveal requirements for the actin cytoskeleton during secretion from mast cells". Cell Motility and the Cytoskeleton. 48 (1): 37–51. doi:10.1002/1097-0169(200101)48:1<37::aid-cm4>3.0.co;2-0. PMID   11124709.
  16. Yarmola EG, Somasundaram T, Boring TA, Spector I, Bubb MR (September 2000). "Actin-latrunculin A structure and function. Differential modulation of actin-binding protein function by latrunculin A". The Journal of Biological Chemistry. 275 (36): 28120–7. doi: 10.1074/jbc.m004253200 . PMID   10859320.
  17. Gronewold TM, Sasse F, Lünsdorf H, Reichenbach H (January 1999). "Effects of rhizopodin and latrunculin B on the morphology and on the actin cytoskeleton of mammalian cells". Cell and Tissue Research. 295 (1): 121–9. doi:10.1007/s004410051218. PMID   9931358. S2CID   20994479.
  18. Fairn GD, McMaster CR (January 2008). "Emerging roles of the oxysterol-binding protein family in metabolism, transport, and signaling". Cellular and Molecular Life Sciences. 65 (2): 228–36. doi:10.1007/s00018-007-7325-2. PMID   17938859. S2CID   5753339.
  19. 1 2 Gibbon BC, Kovar DR, Staiger CJ (December 1999). "Latrunculin B has different effects on pollen germination and tube growth". The Plant Cell. 11 (12): 2349–63. doi:10.1105/tpc.11.12.2349. PMC   144132 . PMID   10590163.
  20. 1 2 3 4 Konishi H, Kikuchi S, Ochiai T, Ikoma H, Kubota T, Ichikawa D, Fujiwara H, Okamoto K, Sakakura C, Sonoyama T, Kokuba Y, Sasaki H, Matsui T, Otsuji E (June 2009). "Latrunculin a has a strong anticancer effect in a peritoneal dissemination model of human gastric cancer in mice". Anticancer Research. 29 (6): 2091–7. PMID   19528469.
  21. Roa-Espitia AL, Hernández-Rendón ER, Baltiérrez-Hoyos R, Muñoz-Gotera RJ, Cote-Vélez A, Jiménez I, González-Márquez H, Hernández-González EO (September 2016). "Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation". Biology Open. 5 (9): 1189–99. doi:10.1242/bio.017558. PMC   5051654 . PMID   27402964.
  22. Spector I, Shochet NR, Kashman Y, Groweiss A (February 1983). "Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells". Science. 219 (4584): 493–5. Bibcode:1983Sci...219..493S. doi:10.1126/science.6681676. PMID   6681676.
  23. Cayman chemical (2017). "SAFETY DATA SHEET Latrunculin A" (PDF).
  24. 1 2 3 4 Cheney KL, White A, Mudianta IW, Winters AE, Quezada M, Capon RJ, Mollo E, Garson MJ (2016-01-20). "Choose Your Weaponry: Selective Storage of a Single Toxic Compound, Latrunculin A, by Closely Related Nudibranch Molluscs". PLOS ONE. 11 (1): e0145134. Bibcode:2016PLoSO..1145134C. doi: 10.1371/journal.pone.0145134 . PMC   4720420 . PMID   26788920.
  25. 1 2 3 Gillor O, Carmeli S, Rahamim Y, Fishelson Z, Ilan M (May 2000). "Immunolocalization of the Toxin Latrunculin B within the Red Sea Sponge Negombata magnifica (Demospongiae, Latrunculiidae)". Marine Biotechnology. 2 (3): 213–23. doi:10.1007/s101260000026. PMID   10852799. S2CID   1759699.
  26. Ayscough KR, Stryker J, Pokala N, Sanders M, Crews P, Drubin DG (April 1997). "High rates of actin filament turnover in budding yeast and roles for actin in the establishment and maintenance of cell polarity were revealed using the actin inhibitor latrunculin-A". The Journal of Cell Biology. 137 (2): 399–416. doi:10.1083/jcb.137.2.399. PMC   2139767 . PMID   9128251.
  27. 1 2 Schubert T, Akopian A (2004). "Actin filaments regulate voltage-gated ion channels in salamander retinal ganglion cells". Neuroscience. 125 (3): 583–90. doi:10.1016/j.neuroscience.2004.02.009. PMID   15099672. S2CID   34541681.
  28. 1 2 Houssen WE, Jaspars M, Wease KN, Scott RH (January 2006). "Acute actions of marine toxin latrunculin A on the electrophysiological properties of cultured dorsal root ganglion neurones". Comparative Biochemistry and Physiology. Toxicology & Pharmacology. 142 (1–2): 19–29. doi:10.1016/j.cbpc.2005.09.006. PMID   16280258.
  29. 1 2 Khanfar MA, Youssef DT, El Sayed KA (February 2010). "Semisynthetic latrunculin derivatives as inhibitors of metastatic breast cancer: biological evaluations, preliminary structure-activity relationship and molecular modeling studies". ChemMedChem. 5 (2): 274–85. doi:10.1002/cmdc.200900430. PMC   3529144 . PMID   20043312.
  30. 1 2 3 Sayed KA, Khanfar MA, Shallal HM, Muralidharan A, Awate B, Youssef DT, Liu Y, Zhou YD, Nagle DG, Shah G (March 2008). "Latrunculin A and its C-17-O-carbamates inhibit prostate tumor cell invasion and HIF-1 activation in breast tumor cells". Journal of Natural Products. 71 (3): 396–402. doi:10.1021/np070587w. PMC   2930178 . PMID   18298079.
  31. Gonzalez JM, Ko MK, Pouw A, Tan JC (February 2016). "Tissue-based multiphoton analysis of actomyosin and structural responses in human trabecular meshwork". Scientific Reports. 6 (1): 21315. Bibcode:2016NatSR...621315G. doi:10.1038/srep21315. PMC   4756353 . PMID   26883567.
  32. 1 2 Rasmussen CA, Kaufman PL, Ritch R, Haque R, Brazzell RK, Vittitow JL (September 2014). "Latrunculin B Reduces Intraocular Pressure in Human Ocular Hypertension and Primary Open-Angle Glaucoma". Translational Vision Science & Technology. 3 (5): 1. doi:10.1167/tvst.3.5.1. PMC   4164113 . PMID   25237590.