Lawrence Schulman

Last updated
Lawrence S. Schulman
Born1941 (1941) (age 83)
Nationality American
Citizenship United States
Known for Boltzmann's brain
Measurement problem
Arrow of time
Scientific career
Fields Physics
Institutions Yeshiva University
Princeton University
Indiana University (Bloomington)
Technion – Israel Institute of Technology
Clarkson University
Georgia Institute of Technology
Thesis A path integral for spin (1967)
Doctoral advisor Arthur Wightman

Lawrence S. Schulman (born 1941) is an American-Israeli physicist known for his work on path integrals, quantum measurement theory and statistical mechanics. He introduced topology into path integrals on multiply connected spaces and has contributed to diverse areas from galactic morphology to the arrow of time.

Contents

Early life and education

He was born to Anna and Louis Schulman in Newark, New Jersey. He first went to the local public school, but switched to more Jewish oriented institutions, graduating from Yeshiva University in 1963. While still in college he married Claire Frangles Sherman. From Yeshiva he went to Princeton where he received the Ph.D. in physics for his thesis (under Arthur Wightman) A path integral for spin.

Career

After completing his thesis he took a position as Assistant Professor at Indiana University (Bloomington), but in 1970 went to the Technion-Israel Institute of Technology in Haifa on a NATO postdoctoral fellowship.

At the Technion he accepted a position as Associate Professor, but only resigned from Indiana several years later as professor. In 1985, he returned to the United States as Chair of the Physics Department of Clarkson University and eventually (1988) also resigned from the Technion as a full professor. In 1991, he left the chair-ship and since then has stayed on at Clarkson as professor of physics.

In 2013, he spent part of a sabbatical at Georgia Institute of Technology and has since been adjunct professor at that institution.

Together with Phil Seiden of IBM, he began the first studies of randomized cellular automata, [1] an area that morphed into a theory of star formation in galaxies, once they were joined by Humberto Gerola (an astrophysicist at IBM) who realized that star formation regions - as well as epidemic models- could be viewed as random cellular automata. [2] Besides providing an explanation for spiral arms, this work ultimately solved the mystery of why dwarf galaxies can vary in their luminosity by large factors. [3]

In 1981, Schulman published Techniques and Applications of Path Integration, [4] from which many physicists learned about Feynman's path integral and its many applications. The book went on to become a Wiley classic and in 2005 came out in a Dover edition (with a supplement).

Once Schulman proved that there was no infinite cluster for long-range percolation in one dimension for sufficiently small but non-zero connection probability, [5] it became of interest whether for sufficiently large connection probability there was an infinite cluster. Together with Charles Newman, then of the University of Arizona. They used real-space renormalization methods to prove that there was. [6]

Schulman lowered his Erdös number to two by collaborating with Mark Kac and others on Feynman's checkerboard path integral, [7] [8] realizing that a particle only acquires mass by scattering, reversing its speed-of-light propagation. Later the path to Erdös was reinforced by another collaboration, with his son Leonard, whose Erdös number is also one. [9] [10]

Quantum measurement had always seemed an oxymoron and in the 1980s Schulman conceived of a way to retain unitary time evolution while at the same time having a single "world" (in the sense of the many worlds interpretation). So measurements in quantum mechanics could yield definite results. The mechanism for achieving definite outcomes was the use of "special states" in which pure unitary evolution led to only a single outcome, when in the absence of special initial conditions many outcomes were conceivable. The need for those states at all times led to an examination of the arrow of time and of determinism (achieved here, but in a way that might have surprised Einstein, at least according to his collaborator - and Schulman's Technion colleague - Nathan Rosen). [11]

These ideas have not been accepted in the mainstream of physics and Schulman himself has expressed doubts about them - his claim though is that other ideas on the quantum measurement process are even less believable. [12] As of 1997, the work was summarized in a book, Time's arrows and quantum measurement. [13] Despite the apparent finality of book publication, more than a decade later practical experimental tests of these ideas were conceived and published. [14] [15]

The arrow of time, of significance in the measurement problem, became a topic in and of itself. This goes back to Schulman's attempt to understand the Wheeler-Feynman absorber theory. [16] Using similar tools he was able to demonstrate that two systems with opposite arrows of time could coexist, even with mild contact between them. [17] There was also examination of other ideas on the arrow, including Thomas Gold's contribution (relating the thermodynamic arrow to the expansion of the universe) [18] and a critique of Boltzmann's notions (now known as Boltzmann's Brain) as a form of solipsism. [19] [20] See Schulman's critique on page 154 of. [21]

Schulman was interested in the quantum Zeno effect, the deviation from exponential decay for short times. He predicted that the slowdown in decay that occurred in pulsed observation and the slowdown resulting from continuous measurement would differ by a factor of 4. [22] This was verified on Bose-Einstein condensates by a group at MIT. [23]

Schulman has also contributed to practical matters through his collaboration with a group in Prague interested in luminescence and scintillators. This was first realized in a study anomalous decay caused by KAM tori in phase space (and the associated data fits) [24] and more recently has led to studies of quantum tunneling. [25] When funds were available undergraduate students from Clarkson were sent to Prague to work in the optical materials laboratories.

Together with Bernard Gaveau (University of Paris VI) Schulman developed an embedding of a stochastic dynamical system in low dimensional Euclidean space, known as the "observable representation." This has proved useful in numerous areas from spin-glasses to ecology. [26] [27] [28]

In 2005, he was awarded a Gutwiller fellowship from the Max Planck Institute for the Physics of Complex Systems in Dresden. [29]

Personal life

He is the father of Leonard Schulman, Computer Science professor at the California Institute of Technology, Linda Parmet, Hebrew and Creative Design teacher at The Weber School, [30] and David Schulman, an intellectual property attorney at Greenberg Traurig, one of the nation's largest law firms.

Related Research Articles

<span class="mw-page-title-main">Quantum Zeno effect</span> Quantum measurement phenomenon

The quantum Zeno effect is a feature of quantum-mechanical systems allowing a particle's time evolution to be slowed down by measuring it frequently enough with respect to some chosen measurement setting.

The fractional quantum Hall effect (FQHE) is a physical phenomenon in which the Hall conductance of 2-dimensional (2D) electrons shows precisely quantized plateaus at fractional values of , where e is the electron charge and h is the Planck constant. It is a property of a collective state in which electrons bind magnetic flux lines to make new quasiparticles, and excitations have a fractional elementary charge and possibly also fractional statistics. The 1998 Nobel Prize in Physics was awarded to Robert Laughlin, Horst Störmer, and Daniel Tsui "for their discovery of a new form of quantum fluid with fractionally charged excitations" The microscopic origin of the FQHE is a major research topic in condensed matter physics.

<span class="mw-page-title-main">Sankar Das Sarma</span>

Sankar Das Sarma is an India-born American theoretical condensed matter physicist, who has worked in the broad research topics of theoretical physics, condensed matter physics, statistical mechanics, quantum physics, and quantum information. He has been a member of the department of physics at University of Maryland, College Park since 1980.

Objective-collapse theories, also known as models of spontaneous wave function collapse or dynamical reduction models, are proposed solutions to the measurement problem in quantum mechanics. As with other theories called interpretations of quantum mechanics, they are possible explanations of why and how quantum measurements always give definite outcomes, not a superposition of them as predicted by the Schrödinger equation, and more generally how the classical world emerges from quantum theory. The fundamental idea is that the unitary evolution of the wave function describing the state of a quantum system is approximate. It works well for microscopic systems, but progressively loses its validity when the mass / complexity of the system increases.

<span class="mw-page-title-main">Percolation threshold</span> Threshold of percolation theory models

The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p1, p2, ..., such that infinite connectivity (percolation) first occurs.

<span class="mw-page-title-main">Feynman checkerboard</span> Fermion path integral approach in 1+1 dimensions

The Feynman checkerboard, or relativistic chessboard model, was Richard Feynman’s sum-over-paths formulation of the kernel for a free spin-½ particle moving in one spatial dimension. It provides a representation of solutions of the Dirac equation in (1+1)-dimensional spacetime as discrete sums.

<span class="mw-page-title-main">Landau–Zener formula</span> Formula for the probability that a system will change between two energy states.

The Landau–Zener formula is an analytic solution to the equations of motion governing the transition dynamics of a two-state quantum system, with a time-dependent Hamiltonian varying such that the energy separation of the two states is a linear function of time. The formula, giving the probability of a diabatic transition between the two energy states, was published separately by Lev Landau, Clarence Zener, Ernst Stueckelberg, and Ettore Majorana, in 1932.

<span class="mw-page-title-main">Subir Sachdev</span> Indian physicist

Subir Sachdev is Herchel Smith Professor of Physics at Harvard University specializing in condensed matter. He was elected to the U.S. National Academy of Sciences in 2014, received the Lars Onsager Prize from the American Physical Society and the Dirac Medal from the ICTP in 2018, and was elected Foreign Member of the Royal Society ForMemRS in 2023. He was a co-editor of the Annual Review of Condensed Matter Physics 2017–2019, and is Editor-in-Chief of Reports on Progress in Physics 2022-.

In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation.

The SP formula for the dephasing rate of a particle that moves in a fluctuating environment unifies various results that have been obtained, notably in condensed matter physics, with regard to the motion of electrons in a metal. The general case requires to take into account not only the temporal correlations but also the spatial correlations of the environmental fluctuations. These can be characterized by the spectral form factor , while the motion of the particle is characterized by its power spectrum . Consequently, at finite temperature the expression for the dephasing rate takes the following form that involves S and P functions:

Joseph Alan Rudnick is an American physicist and professor in the Department of Physics and Astronomy at UCLA. Rudnick currently serves as the senior dean of the UCLA College of Letters and Science and dean of the Division of Physical Sciences. He previously served as the chair of the Department of Physics and Astronomy. His research interests include condensed-matter physics, statistical mechanics, and biological physics.

<span class="mw-page-title-main">Scissors Modes</span> Collective excitations

Scissors Modes are collective excitations in which two particle systems move with respect to each other conserving their shape. For the first time they were predicted to occur in deformed atomic nuclei by N. LoIudice and F. Palumbo, who used a semiclassical Two Rotor Model, whose solution required a realization of the O(4) algebra that was not known in mathematics. In this model protons and neutrons were assumed to form two interacting rotors to be identified with the blades of scissors. Their relative motion (Fig.1) generates a magnetic dipole moment whose coupling with the electromagnetic field provides the signature of the mode.

Stochastic thermodynamics is an emergent field of research in statistical mechanics that uses stochastic variables to better understand the non-equilibrium dynamics present in many microscopic systems such as colloidal particles, biopolymers, enzymes, and molecular motors.

<span class="mw-page-title-main">Crispin Gardiner</span> New Zealand physicist (born 1942)

Crispin William Gardiner is a New Zealand physicist, who has worked in the fields of quantum optics, ultracold atoms and stochastic processes. He has written about 120 journal articles and several books in the fields of quantum optics, stochastic processes and ultracold atoms.

In quantum computing, a qubit is a unit of information analogous to a bit in classical computing, but it is affected by quantum mechanical properties such as superposition and entanglement which allow qubits to be in some ways more powerful than classical bits for some tasks. Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations.

Applying classical methods of machine learning to the study of quantum systems is the focus of an emergent area of physics research. A basic example of this is quantum state tomography, where a quantum state is learned from measurement. Other examples include learning Hamiltonians, learning quantum phase transitions, and automatically generating new quantum experiments. Classical machine learning is effective at processing large amounts of experimental or calculated data in order to characterize an unknown quantum system, making its application useful in contexts including quantum information theory, quantum technologies development, and computational materials design. In this context, it can be used for example as a tool to interpolate pre-calculated interatomic potentials or directly solving the Schrödinger equation with a variational method.

Gian Michele Graf is a Swiss mathematical physicist.

Tin-Lun "Jason" Ho is a Chinese-American theoretical physicist, specializing in condensed matter theory, quantum gases, and Bose-Einstein condensates. He is known for the Mermin-Ho relation.

<span class="mw-page-title-main">Moty Heiblum</span> Israeli electrical engineer and condensed matter physicist

Mordehai "Moty" Heiblum is an Israeli electrical engineer and condensed matter physicist, known for his research in mesoscopic physics.

Dov I. Levine is an American-Israeli physicist, known for his research on quasicrystals, soft condensed matter physics, and statistical mechanics out of equilibrium.

References

  1. Schulman, L. S.; Seiden, P. E. (1978-09-01). "Statistical mechanics of a dynamical system based on Conway's game of Life". Journal of Statistical Physics. 19 (3): 293–314. Bibcode:1978JSP....19..293S. doi:10.1007/BF01011727. ISSN   0022-4715. S2CID   37264536.
  2. Seiden, P. E.; Schulman, L. S.; Gerola, H. (September 1979). "Stochastic star formation and the evolution of galaxies". The Astrophysical Journal. 232: 702–706. Bibcode:1979ApJ...232..702S. doi:10.1086/157329. ISSN   0004-637X.
  3. Gerola, H.; Seiden, P. E.; Schulman, L. S. (December 1980). "Theory of dwarf galaxies". The Astrophysical Journal. 242: 517–527. Bibcode:1980ApJ...242..517G. doi: 10.1086/158485 . ISSN   0004-637X.
  4. "Techniques and Applications of Path Integration". store.doverpublications.com. Retrieved 2017-11-29.
  5. Schulman, L. S. (1983). "Long range percolation in one dimension". Journal of Physics A: Mathematical and General. 16 (17): L639–L641. Bibcode:1983JPhA...16L.639S. doi:10.1088/0305-4470/16/17/001. ISSN   0305-4470.
  6. Newman, C. M.; Schulman, L. S. (1986-12-01). "One dimensional 1/|j − i|S percolation models: The existence of a transition forS≦2". Communications in Mathematical Physics. 104 (4): 547–571. Bibcode:1986CMaPh.104..547N. doi:10.1007/BF01211064. ISSN   0010-3616. S2CID   116923610.
  7. Gaveau, B.; Jacobson, T.; Kac, M.; Schulman, L. S. (1984-07-30). "Relativistic Extension of the Analogy between Quantum Mechanics and Brownian Motion". Physical Review Letters. 53 (5): 419–422. Bibcode:1984PhRvL..53..419G. doi:10.1103/PhysRevLett.53.419.
  8. Jacobson, T.; Schulman, L. S. (1984). "Quantum stochastics: the passage from a relativistic to a non-relativistic path integral". Journal of Physics A: Mathematical and General. 17 (2): 375. Bibcode:1984JPhA...17..375J. doi:10.1088/0305-4470/17/2/023. ISSN   0305-4470.
  9. Schulman, L. S.; Schulman, L. J. (January 2005). "Wave-packet scattering without kinematic entanglement: convergence of expectation values" (PDF). IEEE Transactions on Nanotechnology. 4 (1): 8–13. Bibcode:2005ITNan...4....8S. doi:10.1109/TNANO.2004.840141. ISSN   1536-125X. S2CID   41979767.
  10. Aronov, Boris; Erd\Hos, Paul; Goddard, Wayne; Kleitman, Daniel J.; Klugerman, Michael; Pach, János; Schulman, Leonard J. (1991). "Crossing families". Proceedings of the seventh annual symposium on Computational geometry - SCG '91. New York, NY, USA: ACM. pp. 351–356. doi:10.1145/109648.109687. ISBN   978-0897914260. S2CID   644162.
  11. Schulman, L. S. (1984-06-11). "Definite measurements and deterministic quantum evolution". Physics Letters A. 102 (9): 396–400. Bibcode:1984PhLA..102..396S. doi:10.1016/0375-9601(84)91063-6.
  12. Schulman, Lawrence S. (2017-07-08). "Program for the Special State Theory of Quantum Measurement". Entropy. 19 (7): 343. Bibcode:2017Entrp..19..343S. doi: 10.3390/e19070343 .
  13. Schulman, Lawrence S. (1997-07-31). Time's Arrows and Quantum Measurement. Cambridge University Press. ISBN   9780521567756.
  14. Schulman, L. S. (2016-11-01). "Special States Demand a Force for the Observer". Foundations of Physics. 46 (11): 1471–1494. Bibcode:2016FoPh...46.1471S. doi: 10.1007/s10701-016-0025-8 . ISSN   0015-9018.
  15. Schulman, L. S.; Luz, M. G. E. da (2016-11-01). "Looking for the Source of Change". Foundations of Physics. 46 (11): 1495–1501. Bibcode:2016FoPh...46.1495S. doi: 10.1007/s10701-016-0031-x . ISSN   0015-9018.
  16. Schulman, L. S. (1973-05-15). "Correlating Arrows of Time". Physical Review D. 7 (10): 2868–2874. Bibcode:1973PhRvD...7.2868S. doi:10.1103/PhysRevD.7.2868.
  17. Schulman, L. S. (1999-12-27). "Opposite Thermodynamic Arrows of Time". Physical Review Letters. 83 (26): 5419–5422. arXiv: cond-mat/9911101 . Bibcode:1999PhRvL..83.5419S. doi:10.1103/PhysRevLett.83.5419. S2CID   13302243.
  18. Gold, T. (1962-06-01). "The Arrow of Time". American Journal of Physics. 30 (6): 403–410. Bibcode:1962AmJPh..30..403G. doi:10.1119/1.1942052. ISSN   0002-9505.
  19. Boltzmann, Ludwig (2012-08-15). Lectures on Gas Theory. Courier Corporation. ISBN   9780486152332.
  20. Boltzmann, Ludwig (1965-11-01). "Lectures on Gas Theory". American Journal of Physics. 33 (11): 974–975. Bibcode:1965AmJPh..33R.974B. doi:10.1119/1.1971107. ISSN   0002-9505.
  21. Schulman, L. S. (1973-05-15). "Correlating Arrows of Time". Physical Review D. 7 (10): 2868–2874. Bibcode:1973PhRvD...7.2868S. doi:10.1103/PhysRevD.7.2868.
  22. Schulman, L. S. (1998-03-01). "Continuous and pulsed observations in the quantum Zeno effect". Physical Review A. 57 (3): 1509–1515. Bibcode:1998PhRvA..57.1509S. doi:10.1103/PhysRevA.57.1509.
  23. Streed, Erik W.; Mun, Jongchul; Boyd, Micah; Campbell, Gretchen K.; Medley, Patrick; Ketterle, Wolfgang; Pritchard, David E. (2006-12-27). "Continuous and Pulsed Quantum Zeno Effect". Physical Review Letters. 97 (26): 260402. arXiv: cond-mat/0606430 . Bibcode:2006PhRvL..97z0402S. doi:10.1103/PhysRevLett.97.260402. PMID   17280408. S2CID   2414199.
  24. Schulman, L. S.; Tolkunov, D.; Mihokova, E. (2006-02-13). "Stability of Quantum Breathers". Physical Review Letters. 96 (6): 065501. arXiv: cond-mat/0601209 . Bibcode:2006PhRvL..96f5501S. doi:10.1103/PhysRevLett.96.065501. PMID   16606006. S2CID   12716463.
  25. Mihóková, E.; Schulman, L. S.; Jarý, V.; Dočekalová, Z.; Nikl, M. (2013-07-18). "Quantum tunneling and low temperature delayed recombination in scintillating materials". Chemical Physics Letters. 578 (Supplement C): 66–69. Bibcode:2013CPL...578...66M. doi:10.1016/j.cplett.2013.05.070.
  26. Gaveau, B.; Schulman, L. S. (2006-03-24). "Multiple phases in stochastic dynamics: Geometry and probabilities". Physical Review E. 73 (3): 036124. arXiv: cond-mat/0604159 . Bibcode:2006PhRvE..73c6124G. doi:10.1103/PhysRevE.73.036124. PMID   16605615. S2CID   7771950.
  27. Gaveau, Bernard; Schulman, Lawrence S.; Schulman, Leonard J. (2006). "Imaging geometry through dynamics: the observable representation". Journal of Physics A: Mathematical and General. 39 (33): 10307. arXiv: cond-mat/0607422 . Bibcode:2006JPhA...3910307G. CiteSeerX   10.1.1.560.3372 . doi:10.1088/0305-4470/39/33/004. ISSN   0305-4470. S2CID   44183518.
  28. Schulman, L. S. (2007-06-20). "Mean-Field Spin Glass in the Observable Representation". Physical Review Letters. 98 (25): 257202. arXiv: 0705.1588 . Bibcode:2007PhRvL..98y7202S. doi:10.1103/PhysRevLett.98.257202. PMID   17678051. S2CID   40756227.
  29. "L. S. Schulman".
  30. "Faculty/Staff Directory - The Weber School". www.weberschool.org. Retrieved 2020-12-21.