The Leech River Fault extends across the southern tip of Vancouver Island in British Columbia, Canada, creating the distinctively straight, narrow, and steep-sided valley, occupied by Loss Creek and two reservoirs, that runs from Sombrio Point (southeast of Port Renfrew and Sombrio Beach) due east to the Leech River, and then turns southeast to run past Victoria. It is a thrust fault that marks the northernmost exposure of the Crescent Terrane (part of Siletzia), where basalt of the Metchosin Igneous Complex (correlative with the Crescent Formation on the Olympic Peninsula) is dragged under Vancouver Island by the subducting Juan de Fuca Plate. About ten kilometres north the nearly parallel San Juan Fault marks the southern limit of rock of the Wrangellia terrane, which underlies most of Vancouver Island. Between these two northeast-dipping thrust faults are the Leech River Complex and (near Port Renfrew, but also outcrops near Victoria) the Pandora Peak Unit. [3] These, along with the Pacific Rim Complex further up the coast, [4] are remnants of the Pacific Rim Terrane which was crushed between Wrangellia and Siletzia. [5] The contact between the bottom of Wrangellia and the top of the subducted PRT continues northwest along the coast as the West Coast Fault, and southeast towards Victoria as the Survey Mountain Fault. The Leech River Fault (LRF) extends off-shore towards Cape Flattery, where the Crescent—Pacific Rim contact continues northwest as the Tofino Fault (TF). [6]
The bottom contact of the Crescent Terrane has been uplifted and exposed along the edge of the Olympic Peninsula, where it is known as the Hurricane Ridge Fault (HRF). West of Cape Flattery the southernmost edge of the Crescent Terrane appears to be an extension of the LRF, suggesting left-lateral strike-slip along the Leech River Fault that has offset the Crescent Terrane nearly its whole width. [7]
The Leech River Fault (LRF) is a key element in understanding regional tectonic history as it and the San Juan Fault mark a change from the relatively simply subduction zone structure to the northwest, to the complex structures of the San Juan Islands and the Puget Lowland to the east and southeast. The straightness of its surface trace suggests the LRF has been a strike-slip fault. [8] In these respects the LRF is very similar to the Devils Mountain Fault, which can be traced due west from near Mount Vernon to a point just south of Victoria. [9]
Near the Leech River, where the Survey Mountain fault marks the eastern limit of the Leech River Complex, [10] the LRF and the lineament it follows make a sharp turn to the south (heading S70°E) to run down the Goldstream River past Victoria and into the Juan de Fuca Strait. [11] Such sharp turns are geometrically impossible for individual strike-slip faults, but the southeast-striking Goldstream arm of the LRF parallels the cross-cutting Survey Mountain fault. Strong aeromagnetic anomalies in the Strait that curve from Victoria to Discovery Bay (west of Port Townsend) led to early speculation that the LRF, and the eastern limit of the Crescent Formation, ran down Discovery Bay and the west side of Puget Sound, following the edge of a relict continental margin just as the Tofino Fault follows the present margin. [12] More recent interpretations of marine seismic reflection studies align the Goldstream arm of the LRF with the Southern Whidbey Island Fault (SWIF), with splays branching towards Discovery Bay. [13]
Discovery of Crescent Formation basalt in an exploration well on Whidbey Island (just east of Port Townsend) has led some writers to locate this extension of the LRF onto the southern part of Whidbey Island, just where the SWIF is found. [14] While the eastern contact of the Crescent Formation is believed to not extend east of Whidbey Island, and may double-back westward under Seattle, [15] active faulting on the SWIF extends southeast to where it connects with the Rattlesnake Mountain Fault Zone. Thus it appears that the Leech River and Devils Mountain faults were once a single left-lateral oblique fault (having both horizontal strike-slip and vertical dip-slip motion) that has been offset by right-lateral motion along the extended Survey Mountain—Southern Whidbey Island Fault.
The earlier history of the LRF is revealed by certain metamorphic rocks of the Pacific Rim terrane with a very distinctive mix of minerals. [16] These are also found in the San Juan Islands and in isolated outcrops spread across the Cascades. They formed between 100 and 84 Ma (millions of years ago) during the Late Cretaceous when the Pacific Rim terrane was crushed between Wrangellia and the North American continental plate, dismembered, and the pieces smeared along what was then the edge of the continent. [17] Continued right-lateral transpression carried outlying portions of Wrangellia and likely some odd pieces of the Pacific Rim terrane northwest to Gulf of Alaska. [18] Note that the ancient continental margin was not along the modern coast line (that runs due south from Vancouver Island), but turned in at the modern day Juan de Fuca Strait and followed the Olympic–Wallowa Lineament (OWL) towards southern Idaho, [19] paralleling the general trend of faulting in British Columbia and the North Cascades.
About 50 million years ago the Siletzia terrane, being borne to the northeast by the subducting plate, refused to be subducted. It ran it into the edge of the continent and embayed the overlying crust, bending the section of the Wrangellia—Pacific Rim contact now known as the San Juan fault to its current easterly orientation. This also initiated the oblique left-lateral Devils Mountain fault, including the section now known as the Leech River fault, and its right-lateral extension, the Darrington fault, that strikes southward from the town of Darrington to converge with the right-lateral strike-slip Straight Creek Fault at the OWL (see map). [20] About 42 million years ago this northeastward force rotated to a northerly direction which, striking the SWIF more obliquely, caused the strike-slip movement that offset the LRF past Victoria.
It was previously believed that apparently undisturbed glacial deposits lying across the fault showed it had been inactive since the last glaciation, [21] and that displacements on the Devils Mountain fault were accommodated through other faults in the San Juan Islands. [22] However, a 2017 study reported that the Leech River fault has experienced at least two, and possibly more, large, surface-rupturing earthquakes since the last ice age, [23] and that earthquakes on these faults should be expected as a result of displacements on other faults such as the DDMF and SWIF. [24]
The Juan de Fuca Plate is a small tectonic plate (microplate) generated from the Juan de Fuca Ridge that is subducting beneath the northerly portion of the western side of the North American Plate at the Cascadia subduction zone. It is named after the explorer of the same name. One of the smallest of Earth's tectonic plates, the Juan de Fuca Plate is a remnant part of the once-vast Farallon Plate, which is now largely subducted underneath the North American Plate.
The Farallon Plate was an ancient oceanic plate. It formed one of the three main plates of Panthalassa, alongside the Izanagi Plate and the Phoenix Plate, which were connected by a triple junction. The Farallon Plate began subducting under the west coast of the North American Plate—then located in modern Utah—as Pangaea broke apart and after the formation of the Pacific Plate at the centre of the triple junction during the Early Jurassic. It is named for the Farallon Islands, which are located just west of San Francisco, California.
The Explorer Plate is an oceanic tectonic plate beneath the Pacific Ocean off the west coast of Vancouver Island, Canada, which is partially subducted under the North American Plate. Along with the Juan de Fuca Plate and Gorda Plate, the Explorer Plate is a remnant of the ancient Farallon Plate, which has been subducted under the North American Plate. The Explorer Plate separated from the Juan de Fuca Plate roughly 4 million years ago. In its smoother, southern half, the average depth of the Explorer plate is roughly 2,400 metres (7,900 ft) and rises up in its northern half to a highly variable basin between 1,400 metres (4,600 ft) and 2,200 metres (7,200 ft) in depth.
The Cascadia subduction zone is a 960 km (600 mi) fault at a convergent plate boundary, about 110–160 km (70–100 mi) off the Pacific coast, that stretches from northern Vancouver Island in Canada to Northern California in the United States. It is capable of producing 9.0+ magnitude earthquakes and tsunamis that could reach 30 m (98 ft). The Oregon Department of Emergency Management estimates shaking would last 5–7 minutes along the coast, with strength and intensity decreasing further from the epicenter. It is a very long, sloping subduction zone where the Explorer, Juan de Fuca, and Gorda plates move to the east and slide below the much larger mostly continental North American Plate. The zone varies in width and lies offshore beginning near Cape Mendocino, Northern California, passing through Oregon and Washington, and terminating at about Vancouver Island in British Columbia.
In geology, a terrane is a crust fragment formed on a tectonic plate and accreted or "sutured" to crust lying on another plate. The crustal block or fragment preserves its distinctive geologic history, which is different from the surrounding areas—hence the term "exotic" terrane. The suture zone between a terrane and the crust it attaches to is usually identifiable as a fault. A sedimentary deposit that buries the contact of the terrane with adjacent rock is called an overlap formation. An igneous intrusion that has intruded and obscured the contact of a terrane with adjacent rock is called a stitching pluton.
The Farallon Trench was a subduction related tectonic formation located off the coast of the western California continental margin during the late to mid Cenozoic era, around 50 miles southeast of modern-day Monterey Bay. The time duration of subduction began from around 165 Ma when the Farallon Plate replaced the Mezcalera promontory, until the San Andreas Fault straightening around 35 Ma. As data accumulated over time, a common view developed that one large oceanic plate, the Farallon Plate, acted as a conveyor belt, conveying accreted terranes onto the North American west coast. As the continent overran the subducting Farallon Plate, the denser plate became subducted into the mantle below the continent. When the plates converged, the dense oceanic plate sank into the mantle to form a slab below the lighter continent. Rapid subduction under the southwestern North America continent began 40 to 60 million years ago (Ma), during the mid Paleocene to mid Eocene epochs. This convergent subduction margin created a distinctive geomorphologic feature called an oceanic trench, which occurs at a convergent plate boundaries as a heavy metal rich, lithospheric plate moves below a light silica rich continental plate. The trench marks the position at which the flexed subducting slab begins to descend beneath and deform the continental plate margin. By 43 Ma, during the Eocene, worldwide plate motions changed and the Pacific Plate began to move away from North America and subduction of the Farallon Plate slowed dramatically. By around 36 Ma, the easternmost part of the East Pacific Rise, located between the Pioneer and Murray fracture zones at that time, approached the trench and the young, hot, buoyant lithosphere appears to have clogged part of the subduction zone, resulting in widespread dramatic uplift on land. The eventual complete subduction of this plate, consequential contact of the Pacific Plate with the California continental margin, and creation of the Mendocino Triple Junction (MTJ), took place around 30 to 20 Ma. The partial complete subduction and division of the Farallon Plate by the Pacific Plate, created the Juan de Fuca Plate to the north and the Cocos Plate to the south. The final stages of the evolution of California's continental margin was the growth of the San Andreas transform fault system, which formed as the Pacific Plate came into contact with the continental margin and the MTJ was formed. As subduction of the Pacific Plate continued along this margin, and the contact zone grew, the San Andreas proportionally grew as well.
Loss Creek is a river in the Capital Regional District of British Columbia, Canada. Located on southern Vancouver Island, it flows through a long, steep-sided valley to the Strait of Juan de Fuca on the Pacific Ocean.
Leechtown is at the confluence of the Leech River into the Sooke River in southern Vancouver Island, British Columbia. The ghost town, off BC Highway 1 is about 59 kilometres (37 mi) by road northwest of Victoria.
The Wrangellia Terrane is a crustal fragment (terrane) extending from the south-central part of Alaska and along the Coast of British Columbia in Canada. Some geologists contend that Wrangellia extends southward to Oregon, although this is not generally accepted.
The Queen Charlotte Triple Junction is a geologic triple junction where three tectonic plates meet: the Pacific Plate, the North American Plate, and the Explorer Plate. The three plate boundaries which intersect here are the Queen Charlotte Fault, the northern Cascadia subduction zone, and the Explorer Ridge. The Queen Charlotte triple junction is currently positioned adjacent to the Queen Charlotte Sound near the Dellwood Knolls off the coast of Vancouver Island. 10 Ma to 1.5 Ma prior to the triple junction's current location, it was located southwest of Vancouver Island The movements of the triple junction have been characterized by two major shifts in the Pacific-North American Tertiary plate tectonic record. First, at approximately 40 Ma the relative plate motions switched from orthogonal convergence to right-lateral strike slip. The variance in location of the triple junction may have also been related to the formation of an independent basin block. This formation could have been produced by fore-arc bending of the Pacific Plate, due to oblique underthrusting prior to 1 Ma which produced stresses sufficient to break the Pacific Plate and isolate the block. Transpression of 15–30 mm/yr since 5 Ma has been taking place, as well as varying amounts of both transpression and transtension occurring before then. To the northwest of the triple junction the Pacific plate currently has 15 degrees of oblique convergence, passing under the North American plate along the Queen Charlotte transform fault zone. The Explorer plate is a small chunk of the Juan de Fuca plate that broke away from the Juan de Fuca Plate about 3.5 Ma and has moved much slower with respect to North America.
The geology of British Columbia is a function of its location on the leading edge of the North American continent. The mountainous physiography and the diversity of the different types and ages of rock hint at the complex geology, which is still undergoing revision despite a century of exploration and mapping.
The Olympic–Wallowa lineament (OWL) is a series of geologic structures oriented from northwest to southeast for 650 km (400 mi) across Washington and northeast Oregon in the United States, passing through the Seattle area and including notable features east of the Cascade Range such as the Yakima Fold Belt and Wallowa Mountains. It was first reported by cartographer Erwin Raisz in 1945 on a relief map of the continental United States. Some geologists have questioned the existence of a geological relationship between the individual structures along the lineament suggesting it is an optical illusion. The origin of this feature in its entirety is not well understood with multiple hypotheses on the subject. The Olympic–Wallowa lineament likely predates the Columbia River Basalt Group.
This is a list of articles related to plate tectonics and tectonic plates.
The Philippine Fault System is a major inter-related system of geological faults throughout the whole of the Philippine Archipelago, primarily caused by tectonic forces compressing the Philippines into what geophysicists call the Philippine Mobile Belt. Some notable Philippine faults include the Guinayangan, Masbate and Leyte faults.
The Puget Sound faults under the heavily populated Puget Sound region of Washington state form a regional complex of interrelated seismogenic (earthquake-causing) geologic faults. These include the:
Siletzia is a massive formation of early to middle Eocene epoch marine basalts and interbedded sediments in the forearc of the Cascadia subduction zone, on the west coast of North America. It forms the basement rock under western Oregon and Washington and the southern tip of Vancouver Island. It is now fragmented into the Siletz and Crescent terranes.
Port San Juan is an inlet along the Pacific coast of Vancouver Island in British Columbia, Canada. It was formed from the San Juan and Leech River faults which flank the northern and southern slopes of the San Juan Valley. The San Juan and Gordon rivers empty into the inlet from the northeast.
The geology of Alaska includes Precambrian igneous and metamorphic rocks formed in offshore terranes and added to the western margin of North America from the Paleozoic through modern times. The region was submerged for much of the Paleozoic and Mesozoic and formed extensive oil and gas reserves due to tectonic activity in the Arctic Ocean. Alaska was largely ice free during the Pleistocene, allowing humans to migrate into the Americas.
The Totschunda Fault is a major active dextral (right-lateral) continental strike-slip fault in southeastern Alaska. It forms a link between the Denali Fault to the northwest and the Fairweather Fault to the southeast. The northwestern end of the fault ruptured during the 2002 Denali earthquake.
The San Juan Valley is a small valley located in the Capital Regional District of Vancouver Island in British Columbia, Canada.