Lighting for the elderly

Last updated

Designing lighting for the elderly requires special consideration and care from architects and lighting designers. As people age, they experience neurodegeneration in the retina and in the suprachiasmatic nucleus (SCN). Less light reaches the back of the eyes because the pupils decrease in size as one ages, the lens inside one's eye becomes thicker, and the lens scatters more light, causing objects and colors to appear less vivid. [1] These symptoms are particularly common with persons having alzheimer's disease. Older people also have reduced levels of retinal illuminance, such as having smaller pupils and less transparent crystalline lenses. Furthermore, as an individual ages, they begins to lose retinal neurons, which not only compromises the ability to see but also to register a robust daily pattern of light-dark that is needed to maintain biological rhythms. The 24-hour light-dark cycle is the most important external stimulus for regulating the timing of the circadian cycle.

Contents

In addition to the aging eye, lighting designers need to consider the unique lifestyle needs of the elderly. It is especially important to provide strong illumination in stairwells to prevent slip and trips, for example. Due to physical limitations, they may be deprived of natural sunlight. Many nursing homes and assisted living facilities have dim, constant light levels and poor light spectra, often caused by extensive use of fluorescent lighting. Although widely used in offices and factories, it is unsuitable for clinics and homes. This can cause disruption of the body’s circadian rhythms, which can potentially lead to negative health effects. Flicker from the bulbs can be disturbing, especially for epilepsy patients, and the colour rendition is poor when compared with incandescent bulbs.

Health concerns

Grab rails on a longer-distance commuter train catering for mainly seated passengers Passenger compartment Class 440.jpg
Grab rails on a longer-distance commuter train catering for mainly seated passengers

Accident sensitivity

A 230-volt incandescent light bulb, which gives strong, steady light ideal for illumination. Gluehlampe 01 KMJ.png
A 230-volt incandescent light bulb, which gives strong, steady light ideal for illumination.

Low lighting levels may contribute to slips, trips and falls in the elderly by lowering visibility of hazards such as unexpected steps, or sudden changes in floor surfaces. Obstacles to a safe passage may include clutter or ill-placed furniture, which can cause a slip or a trip. Grab bars and stair rails are obvious aids but must be visible to the user, and so such environments demand strong lighting. Falls of elderly people causes a significant number of hip joint fractures, replacement of which is a serious medical event. Depending on fall configuration, other bones may be fractured. Head injury is also possible. Falls from ladders are very common among the elderly, especially men, with potentially worse injuries owing to the greater heights involved.

Fall prevention is thus an important consideration in designing homes for the elderly, and one of the most critical parts of that design process is supplying strong and effective lighting. Thus, when switched on, lights should react instantaneously, so the user is not surprised by a hidden obstacle as they moves into a kitchen or bathroom, for example. In such a case, incandescent light bulbs are preferred over fluorescent lighting, because they react instantaneously while a CFL takes time to warm up and become bright. Incandescent light bulbs also offer much greater illuminance than many other light sources, are relatively low cost and easy to install. Higher lighting levels enable users to see potential hazards before they need to take avoiding action, and so negotiate them safely and easily. Excellent colour rendering (as measured by the Colour rendering index) by such incandescent light also helps users identify colours correctly. Halogen bulbs are also available for greater efficiency, as are rough service bulbs to avoid discriminatory regulations, especially in the EU. No doubt LED lights will become an alternative source of high quality lighting in the future, but in 2013 they remain expensive for domestic use. Rough service bulbs are available in sizes up to 200 watt in all varieties of fittings. Although lifetime is generally lower than for CFLs, they are replaced easily.

But lighting should also be free from glare and highlights so as not to distract or even temporarily blind the user. Some skill is needed to meet the several criteria governing good lighting systems, especially for senior citizens and patients. Lighting ergonomics attempts to address the problem of designing safe light environments as well as specific lighting products.

Circadian entrainment

Underlying the foundation of light as therapy is the understanding that all living organisms have biological rhythms that repeat approximately in 24-hour cycles, in accordance with the cycle of sunlight. The most prominent way to measure whether a body is entrained in this circadian cycle is by measuring melatonin secretion, cortisol, and core body temperature. The suprachiasmatic nucleus (SCN) regulates melatonin and temperature and typically produces melatonin at night. Melatonin informs the body when it is time to sleep.

When circadian cycles become disrupted (due either to too little light or too much light at the wrong time of day), melatonin is produced at disrupted times. This causes an individual to experience disrupted sleep patterns, which in turn causes numerous health issues to arise.

The key external stimulus is variation in light and darkness over the course of the day. The elderly are at high risk for physical ailments when their circadian cycles are disrupted. Impairment of these SCN-mediated circadian rhythms becomes increasingly common with advancing age, diminished health, and Alzheimer's disease, thereby contributing to the high prevalence of sleep disturbances in these populations.

Sleep disorders

Surveys show that 40 to 70 percent of those 65 years old and older suffer from chronic sleep disturbances. [2] The elderly tend to go to bed early in the evening and wake earlier in the morning than younger adults. Furthermore, the elderly often wake several times throughout the night and have difficulty falling asleep. They are prone to taking numerous naps during the day. Furthermore, constant lighting in assisted living facilities has been demonstrated to impair sleep ability. [3]

In persons with Alzheimer's Disease, sleep disturbances are much more frequent and tend to be more severe. These patients exhibit intermittent sleep throughout the 24-hour day, instead of consolidated sleep at night and wakefulness during the day. [4]

Poor sleep is one of the largest complaints among the elderly, and poor sleep can be linked to a wide variety of problems including increased cardiovascular problems, disruption of endocrine functions, decline of immune functions, stability problems, and poor cognition. [5] Studies have shown that when the elderly are exposed to high circadian light levels during the day and dim circadian levels at night, their sleep duration and efficiency has significantly improved. [6]

Depression

Bright light therapy is a common treatment for seasonal affective disorder and for circadian rhythm sleep disorders Light Therapy for SAD.jpg
Bright light therapy is a common treatment for seasonal affective disorder and for circadian rhythm sleep disorders

The elderly frequently cite depression as a notable ailment. Many researchers have linked the depression to seasonal affective disorder (SAD), and seasonal mood variations have been linked to lack of light. (SAD is markedly more frequent in extreme latitudes, such as the arctic and in Finland [7] ). Light therapy in the form of light boxes are a frequent non-drug treatment for SAD. Several preliminary studies have shown that light therapy is a positive treatment for depressive symptoms for older persons [8] [9] [10] although more studies need to be done in this area.

Measuring light

Typical measurements of light have used a Dosimeter. Dosimeters measure an individual's or an object's exposure to something in the environment, such as light dosimeters and ultraviolet dosimeters.

In order to specifically measure the amount of light entering the eye, personal circadian light meter called the Daysimeter has been developed. [11] This is the first device created to accurately measure and characterize light (intensity, spectrum, timing, and duration) entering the eye that affects the human body's clock.

The device is a small, head-mounted device which measures an individual's daily rest and activity patterns, as well as exposure to circadian light—short-wavelength light, particularly natural light from the blue sky—that stimulates the circadian system. The device measures activity and light together at regular time intervals and electronically stores and logs its operating temperature. The Daysimeter can gather data for up to 30 days for analysis. [12]

Applications

Providing light early in the evening can help seniors sleep better at night and be more alert during the day because the light delays the biological, circadian clock. [13] Many studies have shown that when the elderly are exposed to bright white light, the elderly individual saw improved sleep efficiency. [14] [15] [16] [17] A recent study also demonstrated that exposure to 30 lx of blue light from LEDs in the evening (peaking at 470 nm at the eye for two hours) increased sleep efficiency for older adults who previously had difficulty sleeping.

Providing white light and blue light has even greater impact for those with Alzheimer's disease (AD). So far, two lighting methods have been shown to improve nighttime sleep in AD patients: (1) exposure to bright white light (at least 2500 lx and as high as 8000 lx at the cornea) for at least one hour in the morning, for two weeks and (2) exposure to 30 lx of blue light from LEDs, peaking at 470 nm at the eye for two hours. The light, or the better sleep, also helped to reduce agitated behavior such as pacing, aggressiveness, and speaking loudly. [18] [19] [20] [21] [22] Evening exposure to bright white light (1500 to 2000 lx at the cornea) for two hours decreased nocturnal activity and severity of evening agitation.

Daylight is an ideal light source because it provides high circadian stimulation during the day. Daylight also has the correct intensity and spectrum needed to stimulate the circadian systems. [23] Architectural designs should consider adding sun rooms, skylights, patios, and courtyards into the design of facilities for the elderly. Architects can also select lighting fixtures that emit an array of blue light LEDS (λmax=470 nm) which deliver at least 30 lux at the corner. Lighting schemes that have timers are also helpful in providing the right type of light at the right type of day.

Nightlights are also helpful in reducing falls and injuries and, at the same time, help the elderly to maintain sleep. Falls are a major concern with the elderly; they threaten their independence and risk further health complications. [24] Lighting systems can help seniors maintain balance and stability. [25] Furthermore, sleep deprivation can contribute to decreased postural control. [26] [27] Nightlights that accent horizontal and vertical spaces, such as soft lighting above a doorway or at the foot of a bed, can reduce the risk of falls without disturbing sleep.

See also

Related Research Articles

<span class="mw-page-title-main">Sleep disorder</span> Medical disorder of a persons sleep patterns

A sleep disorder, or somnipathy, is a medical disorder of an individual's sleep patterns. Some sleep disorders are severe enough to interfere with normal physical, mental, social and emotional functioning. Sleep disorders are frequent and can have serious consequences on patients’ health and quality of life. Polysomnography and actigraphy are tests commonly ordered for diagnosing sleep disorders.

<span class="mw-page-title-main">Jet lag</span> Physiological condition caused by travel across time zones

Jet lag is a temporary physiological condition that occurs when one's body's circadian rhythms is out of sync with the time zone that they're in, and is a typical result from doing rapid long-distance travel across multiple time zones. For example, someone flying from New York to London, i.e. from west to east, feels as if the time were five hours earlier than local time, and someone travelling from London to New York, i.e. from east to west, feels as if the time were five hours later than local time. The phase shift when traveling from east to west is referred to as phase-delay of the circadian circle, whereas going west to east is phase-advance of the circadian circle. Most travelers find that it is harder to time zone adjust when traveling to the east. Jet lag was previously classified as one of the circadian rhythm sleep disorders.

<span class="mw-page-title-main">Circadian rhythm</span> Natural internal process that regulates the sleep-wake cycle

A circadian rhythm, or circadian cycle, is a natural oscillation that repeats roughly every 24 hours. Circadian rhythms can refer to any process that originates within an organism and responds to the environment. Circadian rhythms are regulated by a circadian clock whose primary function is to rhythmically co-ordinate biological processes so they occur at the correct time to maximise the fitness of an individual. Circadian rhythms have been widely observed in animals, plants, fungi and cyanobacteria and there is evidence that they evolved independently in each of these kingdoms of life.

<span class="mw-page-title-main">Seasonal affective disorder</span> Medical condition

Seasonal affective disorder (SAD) is a mood disorder subset in which people who typically have normal mental health throughout most of the year exhibit depressive symptoms at the same time each year. It is commonly, but not always, associated with the reductions or increases in total daily sunlight hours that occur during the summer or winter.

<span class="mw-page-title-main">Delayed sleep phase disorder</span> Chronic mismatch between a persons normal daily rhythm, compared to other people and societal norms

Delayed sleep phase disorder (DSPD), more often known as delayed sleep phase syndrome and also as delayed sleep–wake phase disorder, is the delaying of a person's circadian rhythm compared to those of societal norms. The disorder affects the timing of biological rhythms including sleep, peak period of alertness, core body temperature, and hormonal cycles.

<span class="mw-page-title-main">Light therapy</span> Therapy involving intentional exposure to sunlight

Light therapy, also called phototherapy or bright light therapy is the exposure to direct sunlight or artificial light at controlled wavelengths in order to treat a variety of medical disorders, including seasonal affective disorder (SAD), circadian rhythm sleep-wake disorders, cancers, and skin wound infections. Treating skin conditions such as neurodermatitis, psoriasis, acne vulgaris, and eczema with ultraviolet light is called ultraviolet light therapy.

Non-24-hour sleep–wake disorder is one of several chronic circadian rhythm sleep disorders (CRSDs). It is defined as a "chronic steady pattern comprising [...] daily delays in sleep onset and wake times in an individual living in a society". Symptoms result when the non-entrained (free-running) endogenous circadian rhythm drifts out of alignment with the light–dark cycle in nature. Although this sleep disorder is more common in blind people, affecting up to 70% of the totally blind, it can also affect sighted people. Non-24 may also be comorbid with bipolar disorder, depression, and traumatic brain injury. The American Academy of Sleep Medicine (AASM) has provided CRSD guidelines since 2007 with the latest update released in 2015.

A phase response curve (PRC) illustrates the transient change in the cycle period of an oscillation induced by a perturbation as a function of the phase at which it is received. PRCs are used in various fields; examples of biological oscillations are the heartbeat, circadian rhythms, and the regular, repetitive firing observed in some neurons in the absence of noise.

<span class="mw-page-title-main">Ramelteon</span> Hypnotic medication

Ramelteon, sold under the brand name Rozerem among others, is a melatonin agonist medication which is used in the treatment of insomnia. It is indicated specifically for the treatment of insomnia characterized by difficulties with sleep onset. It reduces the time taken to fall asleep, but the degree of clinical benefit is small. The medication is approved for long-term use. Ramelteon is taken by mouth.

<span class="mw-page-title-main">Biological effects of high-energy visible light</span> Blue-light toxicity

High-energy visible light is short-wave light in the violet/blue band from 400 to 450 nm in the visible spectrum, which has a number of purported negative biological effects, namely on circadian rhythm and retinal health, which can lead to age-related macular degeneration. Increasingly, blue blocking filters are being designed into glasses to avoid blue light's purported negative effects. However, there is no good evidence that filtering blue light with spectacles has any effect on eye health, eye strain, sleep quality or vision quality.

Circadian rhythm sleep disorders (CRSD), also known as circadian rhythm sleep-wake disorders (CRSWD), are a family of sleep disorders which affect the timing of sleep. CRSDs arise from a persistent pattern of sleep/wake disturbances that can be caused either by dysfunction in one's biological clock system, or by misalignment between one's endogenous oscillator and externally imposed cues. As a result of this mismatch, those affected by circadian rhythm sleep disorders have a tendency to fall asleep at unconventional time points in the day. These occurrences often lead to recurring instances of disturbed rest, where individuals affected by the disorder are unable to go to sleep and awaken at "normal" times for work, school, and other social obligations. Delayed sleep phase disorder, advanced sleep phase disorder, non-24-hour sleep–wake disorder and irregular sleep–wake rhythm disorder represents the four main types of CRSD.

Shift work sleep disorder (SWSD) is a circadian rhythm sleep disorder characterized by insomnia, excessive sleepiness, or both affecting people whose work hours overlap with the typical sleep period. Insomnia can be the difficulty to fall asleep or to wake up before the individual has slept enough. About 20% of the working population participates in shift work. SWSD commonly goes undiagnosed, so it's estimated that 10–40% of shift workers have SWSD. The excessive sleepiness appears when the individual has to be productive, awake and alert. Both symptoms are predominant in SWSD. There are numerous shift work schedules, and they may be permanent, intermittent, or rotating; consequently, the manifestations of SWSD are quite variable. Most people with different schedules than the ordinary one might have these symptoms but the difference is that SWSD is continual, long-term, and starts to interfere with the individual's life.

Dark therapy is the practice of keeping people in complete darkness for extended periods of time in an attempt to treat psychological conditions. The human body produces the melatonin hormone, which is responsible for supporting the circadian rhythms. Darkness seems to help keep these circadian rhythms stable.

Light effects on circadian rhythm are the effects that light has on circadian rhythm.

Sundowning, or sundown syndrome, is a neurological phenomenon associated with increased confusion and restlessness in people with delirium or some form of dementia. It is most commonly associated with Alzheimer's disease but also found in those with other forms of dementia. The term "sundowning" was coined by nurse Lois K. Evans in 1987 due to the timing of the person's increased confusion beginning in the late afternoon and early evening. For people with sundown syndrome, a multitude of behavioral problems begin to occur and are associated with long term adverse outcomes. Sundowning seems to occur more frequently during the middle stages of Alzheimer's disease and mixed dementia and seems to subside with the progression of the person's dementia. People are generally able to understand that this behavioral pattern is abnormal. Research shows that 20–45% of people with Alzheimer's will experience some variation of sundowning confusion. However, despite lack of an official diagnosis of sundown syndrome in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), there is currently a wide range of reported prevalence.

<span class="mw-page-title-main">Light in school buildings</span>

Light in school buildings traditionally is from a combination of daylight and electric light to illuminate learning spaces, hallways, cafeterias, offices and other interior areas. Light fixtures currently in use usually provide students and teachers with satisfactory visual performance, i.e., the ability to read a book, have lunch, or play basketball in a gymnasium. However, classroom lighting may also affect students' circadian systems, which may in turn affect test scores, attendance and behavior.

Irregular sleep–wake rhythm disorder (ISWRD) is a rare form of circadian rhythm sleep disorder. It is characterized by numerous naps throughout the 24-hour period, no main nighttime sleep episode, and irregularity from day to day. Affected individuals have no pattern of when they are awake or asleep, may have poor quality sleep, and often may be very sleepy while they are awake. The total time asleep per 24 hours is normal for the person's age. The disorder is serious—an invisible disability. It can create social, familial, and work problems, making it hard for a person to maintain relationships and responsibilities, and may make a person home-bound and isolated.

Michael Terman is an American psychologist best known for his work in applying the biological principles of the circadian timing system to psychiatric treatments for depression and sleep disorders. This subspecialty is known as Chronotherapeutics.

Dr. Debra J. Skene is a chronobiologist with specific interest in the mammalian circadian rhythm and the consequences of disturbing the circadian system. She is also interested in finding their potential treatments for people who suffer from circadian misalignment. Skene and her team of researchers tackle these questions using animal models, clinical trials, and most recently, liquid chromatography-mass spectrometry. Most notably, Skene is credited for her evidence of a novel photopigment in humans, later discovered to be melanopsin. She was also involved in discovering links between human PER3 genotype and an extremely shifted sleep schedules categorized as extreme diurnal preference. Skene received her Bachelor of Pharmacy, Master of Science, and Ph.D. in South Africa.

<span class="mw-page-title-main">Melatonin as a medication and supplement</span> Supplement and medication used to treat sleep disorders

Melatonin is a dietary supplement and medication as well as naturally occurring hormone. As a hormone, melatonin is released by the pineal gland and is involved in sleep–wake cycles. As a supplement, it is often used for the attempted short-term treatment of disrupted sleep patterns, such as from jet lag or shift work, and is typically taken orally. Evidence of its benefit for this use, however, is not strong. A 2017 review found that sleep onset occurred six minutes faster with use, but found no change in total time asleep.

References

  1. Lighting the Way: A Key to Independence. http://www.lrc.rpi.edu/programs/lightHealth/AARP/senior/helpingOlderAdults/agingEye.asp
  2. Van Someren, EJ (2000). "Circadian rhythms and sleep in human aging". Chronobiol. Int. 17 (3): 233–43. doi:10.1081/cbi-100101046. PMID   10841205.
  3. Figueiro M, Rea M. New research in the light and health field is expanding the possibilities for LED lighting in healthcare environments: CIE Midterm Meeting Conference Proceedings. Leon, Spain, 2005.
  4. Ncoli-Israel, S; Poceta, JS; Stepnowsky, C; Martin, J; Gehrman, P (1997). "Identification and treatment of sleep problems in the elderly". Sleep Med. Rev. 1 (1): 3–17. doi:10.1016/S1087-0792(97)90002-2. PMID   15310520.
  5. Van Cauter, E; Plat, L; Leproult, R; Copinschi, G (1998). "Alterations of circadian rhythmicity and sleep in aging: endocrine consequences". Horm Res. 49 (3–4): 147–52. doi:10.1159/000023162. PMID   9550116. S2CID   24182531.
  6. Figueiro MG, Bierman A, Bullough JD, Rea MS. 2009. A personal light-treatment device for possibly improving sleep quality in the elderly: Dynamics of nocturnal melatonin suppression at two exposure levels. Chronobiology International. 26(4):726-739. http://www.lrc.rpi.edu/programs/lightHealth/projects/Elderly.asp?id=167
  7. Avery, D H; Eder, DN; Bolte, MA; Hellekson, CJ; Dunner, DL; Vitiello, MV; Prinz, PN (2001). "Dawn simulation and bright light in the treatment of SAD: a controlled study". Biological Psychiatry. 50 (3): 205–216. doi:10.1016/S0006-3223(01)01200-8. PMID   11513820. S2CID   21123296.
  8. Sumaya, IC; Rienzi, BM; Deegan, JF; Moss, DE (2001). "Bright light treatment decreases depression in institutionalized older adults: A placebo-controlled crossover study". J Gerontol A Biol Sci Med Sci. 56A (6): M356–M360. doi: 10.1093/gerona/56.6.M356 . PMID   11382795.
  9. Tsai, YF; Wong, TK; Juang, YY; Tsai, HH (2004). "The effects of light therapy on depressed elders". Int J Geriatr Psychiatry. 19 (6): 545–548. doi:10.1002/gps.1125. hdl: 10397/21503 . PMID   15211533. S2CID   25129143.
  10. Yamada, N; Martin-Iverson, MT; Daimon, K; et al. (1995). "Clinical and chronobiological effects of light therapy on nonseasonal affective disorders". Biol Psychiatry. 37 (12): 866–873. doi:10.1016/0006-3223(94)00221-n. PMID   7548461. S2CID   20809381.
  11. Rea, MS; Bierman, A; Figueiro, MG; Bullough, JD (2008). "A New Approach to Understanding the Impact of Circadian Disruption on Human Health". Journal of Circadian Rhythms. 6: 7. doi: 10.1186/1740-3391-6-7 . PMC   2430544 . PMID   18510756.
  12. "Light and Health | Research Programs | LRC". Archived from the original on 2010-06-09. Retrieved 2016-02-07.
  13. Murphy PJ, Campbell SS. 1996. Enhanced performance in elderly subjects following bright light treatment of sleep maintenance insomnia. J Sleep Res. 5(3):165-72.
  14. Satlin, A; Volicer, L; Ross, V; Herz, L.; Campbell, S. (1992). "Bright light treatment of behavioral and sleep disturbances in patients with Alzheimer's disease". American Journal of Psychiatry. 149 (8): 1028–1032. doi:10.1176/ajp.149.8.1028. PMID   1353313.
  15. Okawa M, Mishima K, Hishikawa Y, Hozumi S, Hori H 1993. Sleep disorder in elderly patients with dementia and trials of new treatments -- enforcement of social interaction and bright light therapy. In: Vm Kumar, HN Mallick, U Nayar: Sleep Wakefulness. New Delhi: Wiley Eastern, 1993.
  16. Mishima; Okawa, M.; Hishikawa, Y.; Hozumi, S.; Hori, H.; Takahashi, K. (1994). "Morning bright light therapy for sleep and behavior disorders in elderly patients with dementia". Acta Psychiatrica Scandinavica. 89 (1): 1–7. doi:10.1111/j.1600-0447.1994.tb01477.x. PMID   8140901. S2CID   27376412.
  17. Fetveit, A; Skjerve, A; Bjorvatn, B (2003). "Bright light treatment improves sleep in institutionalized elderly--an open trial". Int J Geriatr Psychiatry. 18 (6): 520–6. doi:10.1002/gps.852. PMID   12789673. S2CID   33038056.
  18. Ancoli-Israel, S; Martin, J; Shochat, T; Marler, M (2000). "Morning light delays activity acrophase in demented elderly (abstract)". Soc. Light Treat. Biol. Rhythms. 12: 15.
  19. Koyama, E; Matsubara, H; Nakano, T (1999). "Bright light treatment for sleep-wake disturbances in aged individuals with dementia". Psychiatry and Clinical Neurosciences. 53 (2): 227–229. doi:10.1046/j.1440-1819.1999.00483.x. PMID   10459695.
  20. Lyketosos, CG; Lindell Veiel, L; Baker, A; Steele, C (1999). "A randomized, controlled trial of bright light therapy for agitated behaviors in dementia patients residing in long-term care". Int J Geriatr Psychiatry. 14 (7): 520–525. doi:10.1002/(SICI)1099-1166(199907)14:7<520::AID-GPS983>3.0.CO;2-M. PMID   10440971. S2CID   27766874.
  21. Mishima, K; Hishikawa, Y; Okawa, M (1998). "Randomized, dim light controlled, crossover test of morning bright light therapy for rest-activity rhythm disorders in patients with vascular dementia and dementia of Alzheimer's type". Chronobiol. Int. 15 (6): 647–654. doi:10.3109/07420529808993200. PMID   9844752.
  22. Lovell, BB; Ancoli-Israel, S; Gevirtz, R (1995). "Effect of bright light treatment on agitated behavior n institutionalized elderly subjects". Psychiatry Res. 57 (1): 7–12. doi:10.1016/0165-1781(95)02550-g. PMID   7568561. S2CID   22665008.
  23. Figueiro, MG (2008). "A proposed 24 hour lighting scheme for older adults". Lighting Research and Technology. 40 (2): 153–160. doi:10.1177/1477153507087299. S2CID   144050010.
  24. Black, A; Wood, J (2005). "Vision and falls" (PDF). Clinical and Experimental Optometry. 88 (4): 212–22. doi:10.1111/j.1444-0938.2005.tb06699.x. PMID   16083415. S2CID   34972342.
  25. Postural Control and Stability for Seniors. http://www.lrc.rpi.edu/resources/newsroom/pdf/2007/Postural8511.pdf
  26. Patel, M; Gomez, S; Berg, S; et al. (2007). "Effects of 24 h and 36 h sleep deprivation on human postural control and adaptation". Exp. Brain Res. 185 (2): 165–173. doi:10.1007/s00221-007-1143-5. PMID   17932662. S2CID   21029578.
  27. Brassington GS, King AC, Bliwise DL. Sleep problems as a risk factor for falls in a sample community-dwelling adults aged 64–99 years. J. Am. Ger. Soc. 2000; 48(10): 1234–40.