This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(July 2023) |
Likelihoodist statistics or likelihoodism is an approach to statistics that exclusively or primarily uses the likelihood function. Likelihoodist statistics is a more minor school than the main approaches of Bayesian statistics and frequentist statistics, but has some adherents and applications. The central idea of likelihoodism is the likelihood principle: data are interpreted as evidence, and the strength of the evidence is measured by the likelihood function. Beyond this, there are significant differences within likelihood approaches: "orthodox" likelihoodists consider data only as evidence, and do not use it as the basis of statistical inference, while others make inferences based on likelihood, but without using Bayesian inference or frequentist inference. Likelihoodism is thus criticized for either not providing a basis for belief or action (if it fails to make inferences), or not satisfying the requirements of these other schools.
The likelihood function is also used in Bayesian statistics and frequentist statistics, but they differ in how it is used. Some likelihoodists consider their use of likelihood as an alternative to other approaches, while others consider it complementary and compatible with other approaches; see § Relation with other theories.
While likelihoodism is a distinct approach to statistical inference, it can be related to or contrasted with other theories and methodologies in statistics. Here are some notable connections:
While likelihood-based statistics have been widely used and have many advantages, they are not without criticism. Here are some common criticisms of likelihoodist statistics:
Likelihoodism as a distinct school dates to Edwards (1972), which gives a systematic treatment of statistics, based on likelihood. This built on significant earlier work; see Dempster (1972) for a contemporary review.
While comparing ratios of probabilities dates to early statistics and probability, notably Bayesian inference as developed by Pierre-Simon Laplace from the late 1700s, likelihood as a distinct concept is due to Ronald Fisher in Fisher (1921). Likelihood played an important role in Fisher's statistics, but he developed and used many non-likelihood frequentist techniques as well. His late writings, notably Fisher (1955), emphasize likelihood more strongly, and can be considered a precursor to a systematic theory of likelihoodism.
The likelihood principle was proposed in 1962 by several authors, notably Barnard, Jenkins & Winsten (1962), Birnbaum (1962), and Savage (1962), and followed by the law of likelihood in Hacking (1965); these laid the foundation for likelihoodism. See Likelihood principle § History for early history.
While Edwards's version of likelihoodism considered likelihood as only evidence, which was followed by Royall (1997), others proposed inference based only on likelihood, notably as extensions of maximum likelihood estimation. Notable is John Nelder, who declared in Nelder (1999 , p. 264):
At least once a year I hear someone at a meeting say that there are two modes of inference: frequentist and Bayesian. That this sort of nonsense should be so regularly propagated shows how much we have to do. To begin with there is a flourishing school of likelihood inference, to which I belong.
Textbooks that take a likelihoodist approach include the following: Kalbfleisch (1985), Azzalini (1996), Pawitan (2001), Rohde (2014), and Held & Sabanés Bové (2014). A collection of relevant papers is given by Taper & Lele (2004).
Statistical inference is the process of using data analysis to infer properties of an underlying distribution of probability. Inferential statistical analysis infers properties of a population, for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population.
Statistics is a field of inquiry that studies the collection, analysis, interpretation, and presentation of data. It is applicable to a wide variety of academic disciplines, from the physical and social sciences to the humanities; it is also used and misused for making informed decisions in all areas of business and government.
The likelihood function is the joint probability of the observed data viewed as a function of the parameters of a statistical model.
Bayesian inference is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law. In the philosophy of decision theory, Bayesian inference is closely related to subjective probability, often called "Bayesian probability".
In statistics, point estimation involves the use of sample data to calculate a single value which is to serve as a "best guess" or "best estimate" of an unknown population parameter. More formally, it is the application of a point estimator to the data to obtain a point estimate.
In statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value.
Bayesian statistics is a theory in the field of statistics based on the Bayesian interpretation of probability where probability expresses a degree of belief in an event. The degree of belief may be based on prior knowledge about the event, such as the results of previous experiments, or on personal beliefs about the event. This differs from a number of other interpretations of probability, such as the frequentist interpretation that views probability as the limit of the relative frequency of an event after many trials.
The Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. The models in questions can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, but since it uses the (integrated) marginal likelihood rather than the maximized likelihood, both tests only coincide under simple hypotheses. Also, in contrast with null hypothesis significance testing, Bayes factors support evaluation of evidence in favor of a null hypothesis, rather than only allowing the null to be rejected or not rejected.
In statistics, a nuisance parameter is any parameter which is unspecified but which must be accounted for in the hypothesis testing of the parameters which are of interest.
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. In the context of learning, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre-existing set of data is considered. However, the task can also involve the design of experiments such that the data collected is well-suited to the problem of model selection. Given candidate models of similar predictive or explanatory power, the simplest model is most likely to be the best choice.
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known. An example would be to predict the acceleration of a human body in a head-on crash with another car: even if the speed was exactly known, small differences in the manufacturing of individual cars, how tightly every bolt has been tightened, etc., will lead to different results that can only be predicted in a statistical sense.
Fiducial inference is one of a number of different types of statistical inference. These are rules, intended for general application, by which conclusions can be drawn from samples of data. In modern statistical practice, attempts to work with fiducial inference have fallen out of fashion in favour of frequentist inference, Bayesian inference and decision theory. However, fiducial inference is important in the history of statistics since its development led to the parallel development of concepts and tools in theoretical statistics that are widely used. Some current research in statistical methodology is either explicitly linked to fiducial inference or is closely connected to it.
Statistics, in the modern sense of the word, began evolving in the 18th century in response to the novel needs of industrializing sovereign states.
Statistics is a scientific field that deals with data. It utilizes data to solve practical problems and analyzes collected data in order to draw conclusions. Different approaches to analyzing the same data can lead to different conclusions. For example, weather forecasts can vary among different forecasting agencies that use different forecasting algorithms and techniques. Conclusions drawn from statistical analysis often involve uncertainty as they represent the probability of an event occurring. For instance, a weather forecast indicating a 90% probability of rain would classify it as likely to rain, while a 5% probability would suggest it is unlikely to rain. The actual outcome, whether it rains or not, can only be determined afterwards.
Frequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or proportion of findings in the data. Frequentist-inference underlies frequentist statistics, in which the well-established methodologies of statistical hypothesis testing and confidence intervals are founded.
Bayesian econometrics is a branch of econometrics which applies Bayesian principles to economic modelling. Bayesianism is based on a degree-of-belief interpretation of probability, as opposed to a relative-frequency interpretation.
In statistics, robust Bayesian analysis, also called Bayesian sensitivity analysis, is a type of sensitivity analysis applied to the outcome from Bayesian inference or Bayesian optimal decisions.
In marketing, Bayesian inference allows for decision making and market research evaluation under uncertainty and with limited data.
Bayesian operational modal analysis (BAYOMA) adopts a Bayesian system identification approach for operational modal analysis (OMA). Operational modal analysis aims at identifying the modal properties (natural frequencies, damping ratios, mode shapes, etc.) of a constructed structure using only its (output) vibration response (e.g., velocity, acceleration) measured under operating conditions. The (input) excitations to the structure are not measured but are assumed to be 'ambient' ('broadband random'). In a Bayesian context, the set of modal parameters are viewed as uncertain parameters or random variables whose probability distribution is updated from the prior distribution (before data) to the posterior distribution (after data). The peak(s) of the posterior distribution represents the most probable value(s) (MPV) suggested by the data, while the spread of the distribution around the MPV reflects the remaining uncertainty of the parameters.
In statistics, when selecting a statistical model for given data, the relative likelihood compares the relative plausibilities of different candidate models or of different values of a parameter of a single model.