List of chemical compounds in coffee

Last updated

There are more than 1,000 chemical compounds in coffee, [1] and their molecular and physiological effects are areas of active research in food chemistry.

Contents

Overview

There are a large number of ways to organize coffee compounds. The major texts in the area variously sort by effects on flavor, physiology, pre- and post-roasting effects, growing and processing effects, botanical variety differences, country of origin differences, and many others. Interactions between chemical compounds also is a frequent area of taxonomy, as are the major organic chemistry categories (protein, carbohydrate, lipid, etc.) that are relevant to the field. In the field of aroma and flavor alone, Flament gives a list of 300 contributing chemicals in green beans, and over 850 after roasting. He lists 16 major categories to cover those compounds related to aroma and flavor. [2]

The chemical complexity of coffee is emerging, especially due to observed physiological effects which cannot be related only to the presence of caffeine. Moreover, coffee contains an exceptionally substantial amount of antioxidants such as chlorogenic acids, hydroxycinnamic acids, caffeine and Maillard reaction products, such as melanoidins. [3] Chemical groups, such as alkaloids and caffeoylquinic acids, are common insecticides; their effects on coffee quality and flavor have been investigated in most studies. [4] Although health effects are certainly a valid taxonomy category, less than 30 of the over 1,000 compounds have been subjected to juried, health-related research (e.g. official potential carcinogen classification — see furans, for example), so health categorization has been avoided.

On the other hand, physiological effects are well documented in some (e.g. stimulant effects of caffeine), and those are listed where they are relevant and well-documented. Internet claims for individual chemicals, or compound synergies, such as preventing dental cavities (speculative but unproven effect of the alkaloid trigonelline with in vitro bacterial attachment research, but missing in vivo research on any health effects), preventing kidney stones, or negative effects, also have been avoided.

Groups

Chemicals found in coffee can be categorized in the following groups:

Acids and anhydrides

Quinic acid, 3,5-Di-caffeoylquinic acid

Alkaloids

Caffeine, Putrescine, Theophylline, Trigonelline

Alcohols

Quinic acid, Acetoin

Amines

Esters

3,5-Di-caffeoylquinic acid

Ketones

Acetoin

Organosulfuric compounds

Dimethyl disulfide

Phenols

3,5-Di-caffeoylquinic acid

Triglycerides

See also

Related Research Articles

<span class="mw-page-title-main">Alkaloid</span> Class of naturally occurring chemical compounds

Alkaloids are a class of basic, naturally occurring organic compounds that contain at least one nitrogen atom. This group also includes some related compounds with neutral and even weakly acidic properties. Some synthetic compounds of similar structure may also be termed alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen or sulfur. More rarely still, they may contain elements such as phosphorus, chlorine, and bromine.

<span class="mw-page-title-main">Caffeine</span> Central nervous system stimulant

Caffeine is a central nervous system (CNS) stimulant of the methylxanthine class. It is mainly used recreationally or as a cognitive enhancer, increasing alertness and attentional performance. Caffeine acts by blocking binding of adenosine to the adenosine A1 receptor, which enhances release of the neurotransmitter acetylcholine. Caffeine has a three-dimensional structure similar to that of adenosine, which allows it to bind and block its receptors. Caffeine also increases cyclic AMP levels through nonselective inhibition of phosphodiesterase.

<span class="mw-page-title-main">Guarana</span> Species of tree

Guaraná, Paullinia cupana, syns. P. crysan, P. sorbilis) is a climbing plant in the family Sapindaceae, native to the Amazon basin and especially common in Brazil. Guaraná has large leaves and clusters of flowers, and is best known for the seeds from its fruits, which are about the size of a coffee bean.

<span class="mw-page-title-main">Maillard reaction</span> Chemical reaction in cooking

The Maillard reaction is a chemical reaction between amino acids and reducing sugars that gives browned food its distinctive flavor. Seared steaks, fried dumplings, cookies and other kinds of biscuits, breads, toasted marshmallows, and many other foods undergo this reaction. It is named after French chemist Louis Camille Maillard, who first described it in 1912 while attempting to reproduce biological protein synthesis. The reaction is a form of non-enzymatic browning which typically proceeds rapidly from around 140 to 165 °C. Many recipes call for an oven temperature high enough to ensure that a Maillard reaction occurs. At higher temperatures, caramelization and subsequently pyrolysis become more pronounced.

<span class="mw-page-title-main">Carbamate</span> Chemical group (>N–C(=O)–O–)

In organic chemistry, a carbamate is a category of organic compounds with the general formula R2NC(O)OR and structure >N−C(=O)−O−, which are formally derived from carbamic acid. The term includes organic compounds, formally obtained by replacing one or more of the hydrogen atoms by other organic functional groups; as well as salts with the carbamate anion H2NCOO.

Decaffeination is the removal ("de-") of caffeine from coffee beans, cocoa, tea leaves, and other caffeine-containing materials. Decaffeinated products are commonly termed by the abbreviation decaf. Decaffeinated drinks contain typically 1–2% of the original caffeine content, and sometimes as much as 20%.

<span class="mw-page-title-main">Aroma compound</span> Chemical compound that has a smell or odor

An aroma compound, also known as an odorant, aroma, fragrance or flavoring, is a chemical compound that has a smell or odor. For an individual chemical or class of chemical compounds to impart a smell or fragrance, it must be sufficiently volatile for transmission via the air to the olfactory system in the upper part of the nose. As examples, various fragrant fruits have diverse aroma compounds, particularly strawberries which are commercially cultivated to have appealing aromas, and contain several hundred aroma compounds.

Organochlorine chemistry is concerned with the properties of organochlorine compounds, or organochlorides, organic compounds containing at least one covalently bonded atom of chlorine. The chloroalkane class includes common examples. The wide structural variety and divergent chemical properties of organochlorides lead to a broad range of names, applications, and properties. Organochlorine compounds have wide use in many applications, though some are of profound environmental concern, with TCDD being one of the most notorious.

<span class="mw-page-title-main">Coffee bean</span> Seed of the coffee plant

A coffee bean is a seed of the Coffea plant and the source for coffee. It is the pip inside the red or purple fruit. This fruit is often referred to as a coffee cherry. Just like ordinary cherries, the coffee fruit is also a so-called stone fruit. Even though the coffee beans are not technically beans, they are referred to as such because of their resemblance to true beans. The fruits; cherries or berries, most commonly contain two stones with their flat sides together. A small percentage of cherries contain a single seed, instead of the usual two. This is called a "peaberry". The peaberry occurs only between 10% and 15% of the time, and it is a fairly common belief that they have more flavour than normal coffee beans. Like Brazil nuts and white rice, coffee beans consist mostly of endosperm.

<span class="mw-page-title-main">Trigonelline</span> Chemical compound

Trigonelline is an alkaloid with chemical formula C7H7NO2. It is a zwitterion formed by the methylation of the nitrogen atom of niacin (vitamin B3). Trigonelline is a product of niacin metabolism that is excreted in urine of mammals.

<span class="mw-page-title-main">Chlorogenic acid</span> Chemical compound

Chlorogenic acid (CGA) is the ester of caffeic acid and (−)-quinic acid, functioning as an intermediate in lignin biosynthesis. The term "chlorogenic acids" refers to a related polyphenol family of esters, including hydroxycinnamic acids with quinic acid.

<span class="mw-page-title-main">Coffee roasting</span> Process of heating green coffee beans

Roasting coffee transforms the chemical and physical properties of green coffee beans into roasted coffee products. The roasting process is what produces the characteristic flavor of coffee by causing the green coffee beans to change in taste. Unroasted beans contain similar if not higher levels of acids, protein, sugars, and caffeine as those that have been roasted, but lack the taste of roasted coffee beans due to the Maillard and other chemical reactions that occur during roasting.

Guaiacol is an organic compound with the formula C6H4(OH)(OCH3). It is a phenolic compound containing a methoxy functional group. Guaiacol appears as a viscous colorless oil, although aged or impure samples are often yellowish. It occurs widely in nature and is a common product of the pyrolysis of wood.

<span class="mw-page-title-main">Paraxanthine</span> Chemical compound

Paraxanthine, also known as 1,7-dimethylxanthine, is a metabolite of theophylline and theobromine, two well-known stimulants found in coffee, tea, and chocolate. It is a member of the xanthine family of alkaloids, which includes caffeine, theobromine, and theophylline.

<span class="mw-page-title-main">Sports nutrition</span> Study and practice of nutrition to improve performance

Sports nutrition is the study and practice of nutrition and diet with regards to improving anyone's athletic performance. Nutrition is an important part of many sports training regimens, being popular in strength sports and endurance sports. Sports nutrition focuses its studies on the type, as well as the quantity of fluids and food taken by an athlete. In addition, it deals with the consumption of nutrients such as vitamins, minerals, supplements and organic substances that include carbohydrates, proteins and fats.

Coffee cupping, or coffee tasting, is the practice of observing the tastes and aromas of brewed coffee. It is a professional practice but can be done informally by anyone or by professionals known as "Q Graders". A standard coffee cupping procedure involves deeply sniffing the coffee, then slurping the coffee from a spoon so it is aerated and spread across the tongue. The coffee taster attempts to measure aspects of the coffee's taste, specifically the body, sweetness, acidity, flavour, and aftertaste. Since coffee beans embody telltale flavours from the region where they were grown, cuppers may attempt to identify the coffee's origin.

<span class="mw-page-title-main">Tomatine</span> Chemical compound

Tomatine is a glycoalkaloid, found in the stems and leaves of tomato plants, and in the fruits at much lower concentrations. Chemically pure tomatine is a white crystalline solid at standard temperature and pressure.

<span class="mw-page-title-main">Phenolic content in tea</span> Natural plant compounds

The phenolic content in tea refers to the phenols and polyphenols, natural plant compounds which are found in tea. These chemical compounds affect the flavor and mouthfeel of tea. Polyphenols in tea include catechins, theaflavins, tannins, and flavonoids.

Caffeoylquinic acids (CQA) are compounds composed of a quinic acid core, acylated with one or more caffeoyl groups. There is a positive correlation between the number of caffeoyl groups bound to quinic acid and the rate of ATP production. Compounds of this class include:

<span class="mw-page-title-main">Caffeine dehydrogenase</span> Enzyme

Caffeine dehydrogenase, commonly referred to in scientific literature as caffeine oxidase, is an enzyme with the systematic name caffeine:ubiquinone oxidoreductase. The enzyme is most well known for its ability to directly oxidize caffeine, a type of methylxanthine, to trimethyluric acid. Caffeine dehydrogenase can be found in bacterium Pseudomonas sp. CBB1 and in several species within the genera Alcaligenes, Rhodococcus, and Klebsiella.

References

  1. R.J. Clarke (2013). Coffee Volume 1 Chemistry. New York: Springer. ISBN   978-9401086936.
  2. Ivon Flament (2002). Coffee Flavor Chemistry. New York: Wiley. ISBN   978-0471720386.
  3. Capek, Peter; Paulovičová, Ema; Matulová, Mária; Mislovičová, Danica; Navarini, Luciano; Suggi-Liverani, Furio (15 March 2014). "Coffea arabica instant coffee—Chemical view and immunomodulating properties". Carbohydrate Polymers. 103: 418–426. doi:10.1016/j.carbpol.2013.12.068. PMID   24528749.
  4. Green, Paul W C; Davis, Aaron P; Cossé, Allard A; Vega, Fernando E (4 November 2015). "Can Coffee Chemical Compounds and Insecticidal Plants Be Harnessed for Control of Major Coffee Pests?". Journal of Agricultural and Food Chemistry. 63 (43): 9427–9434. doi:10.1021/acs.jafc.5b03914. PMID   26458882 via Hunter College Libraries.
  5. 1 2 Herraiz, T; Chaparro, C (18 January 2006). "Human monoamine oxidase enzyme inhibition by coffee and beta-carbolines norharman and harman isolated from coffee". Life Sciences. 78 (8): 795–802. doi:10.1016/j.lfs.2005.05.074. PMID   16139309.