In mathematics, many logarithmic identities exist. The following is a compilation of the notable of these, many of which are used for computational purposes.
Trivial mathematical identities are relatively simple (for an experienced mathematician), though not necessarily unimportant. Trivial logarithmic identities are:
because | ||
because |
By definition, we know that:
where and .
Setting , we can see that: . So, substituting these values into the formula, we see that: , which gets us the first property.
Setting , we can see that: . So, substituting these values into the formula, we see that: , which gets us the second property.
Logarithms and exponentials with the same base cancel each other. This is true because logarithms and exponentials are inverse operations—much like the same way multiplication and division are inverse operations, and addition and subtraction are inverse operations.
Both of the above are derived from the following two equations that define a logarithm: (note that in this explanation, the variables of and may not be referring to the same number)
Looking at the equation , and substituting the value for of , we get the following equation: , which gets us the first equation. Another more rough way to think about it is that , and that that "" is .
Looking at the equation , and substituting the value for of , we get the following equation: , which gets us the second equation. Another more rough way to think about it is that , and that that something "" is .
Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = bc and/or y = bd, so that logb(x) = c and logb(y) = d. Derivations also use the log definitions x = blogb(x) and x = logb(bx).
because | ||
because | ||
because | ||
because | ||
because | ||
because |
Where , , and are positive real numbers and , and and are real numbers.
The laws result from canceling exponentials and the appropriate law of indices. Starting with the first law:
The law for powers exploits another of the laws of indices:
The law relating to quotients then follows:
Similarly, the root law is derived by rewriting the root as a reciprocal power:
These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible method.
To state the logarithm of a product law formally:
Derivation:
Let , where , and let . We want to relate the expressions and . This can be done more easily by rewriting in terms of exponentials, whose properties we already know. Additionally, since we are going to refer to and quite often, we will give them some variable names to make working with them easier: Let , and let .
Rewriting these as exponentials, we see that
From here, we can relate (i.e. ) and (i.e. ) using exponent laws as
To recover the logarithms, we apply to both sides of the equality.
The right side may be simplified using one of the logarithm properties from before: we know that , giving
We now resubstitute the values for and into our equation, so our final expression is only in terms of , , and .
This completes the derivation.
To state the logarithm of a quotient law formally:
Derivation:
Let , where , and let .
We want to relate the expressions and . This can be done more easily by rewriting in terms of exponentials, whose properties we already know. Additionally, since we are going to refer to and quite often, we will give them some variable names to make working with them easier: Let , and let .
Rewriting these as exponentials, we see that:
From here, we can relate (i.e. ) and (i.e. ) using exponent laws as
To recover the logarithms, we apply to both sides of the equality.
The right side may be simplified using one of the logarithm properties from before: we know that , giving
We now resubstitute the values for and into our equation, so our final expression is only in terms of , , and .
This completes the derivation.
To state the logarithm of a power law formally:
Derivation:
Let , where , let , and let . For this derivation, we want to simplify the expression . To do this, we begin with the simpler expression . Since we will be using often, we will define it as a new variable: Let .
To more easily manipulate the expression, we rewrite it as an exponential. By definition, , so we have
Similar to the derivations above, we take advantage of another exponent law. In order to have in our final expression, we raise both sides of the equality to the power of :
where we used the exponent law .
To recover the logarithms, we apply to both sides of the equality.
The left side of the equality can be simplified using a logarithm law, which states that .
Substituting in the original value for , rearranging, and simplifying gives
This completes the derivation.
To state the change of base logarithm formula formally:
This identity is useful to evaluate logarithms on calculators. For instance, most calculators have buttons for ln and for log10, but not all calculators have buttons for the logarithm of an arbitrary base.
Let , where Let . Here, and are the two bases we will be using for the logarithms. They cannot be 1, because the logarithm function is not well defined for the base of 1.[ citation needed ] The number will be what the logarithm is evaluating, so it must be a positive number. Since we will be dealing with the term quite frequently, we define it as a new variable: Let .
To more easily manipulate the expression, it can be rewritten as an exponential.
Applying to both sides of the equality,
Now, using the logarithm of a power property, which states that ,
Isolating , we get the following:
Resubstituting back into the equation,
This completes the proof that .
This formula has several consequences:
where is any permutation of the subscripts 1, ..., n. For example
The following summation/subtraction rule is especially useful in probability theory when one is dealing with a sum of log-probabilities:
because | ||
because |
Note that the subtraction identity is not defined if , since the logarithm of zero is not defined. Also note that, when programming, and may have to be switched on the right hand side of the equations if to avoid losing the "1 +" due to rounding errors. Many programming languages have a specific log1p(x)
function that calculates without underflow (when is small).
More generally:
A useful identity involving exponents: or more universally:
All are accurate around , but not for large numbers.
The last limit is often summarized as "logarithms grow more slowly than any power or root of x".
To modify the limits of integration to run from to , we change the order of integration, which changes the sign of the integral:
Therefore:
for and is a sample point in each interval.
The natural logarithm has a well-known Taylor series [7] expansion that converges for in the open-closed interval :
Within this interval, for , the series is conditionally convergent, and for all other values, it is absolutely convergent. For or , the series does not converge to . In these cases, different representations [8] or methods must be used to evaluate the logarithm.
It is not uncommon in advanced mathematics, particularly in analytic number theory and asymptotic analysis, to encounter expressions involving differences or ratios of harmonic numbers at scaled indices. [9] The identity involving the limiting difference between harmonic numbers at scaled indices and its relationship to the logarithmic function provides an intriguing example of how discrete sequences can asymptotically relate to continuous functions. This identity is expressed as [10]
which characterizes the behavior of harmonic numbers as they grow large. This approximation (which precisely equals in the limit) reflects how summation over increasing segments of the harmonic series exhibits integral properties, giving insight into the interplay between discrete and continuous analysis. It also illustrates how understanding the behavior of sums and series at large scales can lead to insightful conclusions about their properties. Here denotes the -th harmonic number, defined as
The harmonic numbers are a fundamental sequence in number theory and analysis, known for their logarithmic growth. This result leverages the fact that the sum of the inverses of integers (i.e., harmonic numbers) can be closely approximated by the natural logarithm function, plus a constant, especially when extended over large intervals. [11] [9] [12] As tends towards infinity, the difference between the harmonic numbers and converges to a non-zero value. This persistent non-zero difference, , precludes the possibility of the harmonic series approaching a finite limit, thus providing a clear mathematical articulation of its divergence. [13] [14] The technique of approximating sums by integrals (specifically using the integral test or by direct integral approximation) is fundamental in deriving such results. This specific identity can be a consequence of these approximations, considering:
The limit explores the growth of the harmonic numbers when indices are multiplied by a scaling factor and then differenced. It specifically captures the sum from to :
This can be estimated using the integral test for convergence, or more directly by comparing it to the integral of from to :
As the window's lower bound begins at and the upper bound extends to , both of which tend toward infinity as , the summation window encompasses an increasingly vast portion of the smallest possible terms of the harmonic series (those with astronomically large denominators), creating a discrete sum that stretches towards infinity, which mirrors how continuous integrals accumulate value across an infinitesimally fine partitioning of the domain. In the limit, the interval is effectively from to where the onset implies this minimally discrete region.
The harmonic number difference formula for is an extension [10] of the classic, alternating identity of :
which can be generalized as the double series over the residues of :
where is the principle ideal generated by . Subtracting from each term (i.e., balancing each term with the modulus) reduces the magnitude of each term's contribution, ensuring convergence by controlling the series' tendency toward divergence as increases. For example:
This method leverages the fine differences between closely related terms to stabilize the series. The sum over all residues ensures that adjustments are uniformly applied across all possible offsets within each block of terms. This uniform distribution of the "correction" across different intervals defined by functions similarly to telescoping over a very large sequence. It helps to flatten out the discrepancies that might otherwise lead to divergent behavior in a straightforward harmonic series. Note that the structure of the summands of this formula matches those of the interpolated harmonic number when both the domain and range are negated (i.e., ). However, the interpretation and roles of the variables differ.
A fundamental feature of the proof is the accumulation of the subtrahends into a unit fraction, that is, for , thus rather than , where the extrema of are if and otherwise, with the minimum of being implicit in the latter case due to the structural requirements of the proof. Since the cardinality of depends on the selection of one of two possible minima, the integral , as a set-theoretic procedure, is a function of the maximum (which remains consistent across both interpretations) plus , not the cardinality (which is ambiguous [15] [16] due to varying definitions of the minimum). Whereas the harmonic number difference computes the integral in a global sliding window, the double series, in parallel, computes the sum in a local sliding window—a shifting -tuple—over the harmonic series, advancing the window by positions to select the next -tuple, and offsetting each element of each tuple by relative to the window's absolute position. The sum corresponds to which scales without bound. The sum corresponds to the prefix trimmed from the series to establish the window's moving lower bound , and is the limit of the sliding window (the scaled, truncated [17] series):
To remember higher integrals, it is convenient to define
where is the nth harmonic number:
Then
The identities of logarithms can be used to approximate large numbers. Note that logb(a) + logb(c) = logb(ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 232,582,657−1. To get the base-10 logarithm, we would multiply 32,582,657 by log10(2), getting 9,808,357.09543 = 9,808,357 + 0.09543. We can then get 109,808,357× 100.09543 ≈ 1.25 × 109,808,357.
Similarly, factorials can be approximated by summing the logarithms of the terms.
The complex logarithm is the complex number analogue of the logarithm function. No single valued function on the complex plane can satisfy the normal rules for logarithms. However, a multivalued function can be defined which satisfies most of the identities. It is usual to consider this as a function defined on a Riemann surface. A single valued version, called the principal value of the logarithm, can be defined which is discontinuous on the negative x axis, and is equal to the multivalued version on a single branch cut.
In what follows, a capital first letter is used for the principal value of functions, and the lower case version is used for the multivalued function. The single valued version of definitions and identities is always given first, followed by a separate section for the multiple valued versions.
The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules.
When k is any integer:
Principal value forms:
Multiple value forms, for any k an integer:
Principal value forms:
Multiple value forms:
A complex power of a complex number can have many possible values.
Principal value form:
Multiple value forms:
Where k1, k2 are any integers:
As a consequence of the harmonic number difference, the natural logarithm is asymptotically approximated by a finite series difference [10] , representing a truncation of the integral at :
where is the nth triangular number, and is the sum of the first n even integers. Since the nth pronic number is asymptotically equivalent to the nth perfect square, it follows that:
The prime number theorem provides the following asymptotic equivalence:
where is the prime counting function. This relationship is equal to [10] : 2 :
where is the harmonic mean of . This is derived from the fact that the difference between the th harmonic number and asymptotically approaches a small constant, resulting in . This behavior can also be derived from the properties of logarithms: is half of , and this "first half" is the natural log of the root of , which corresponds roughly to the first th of the sum , or . The asymptotic equivalence of the first th of to the latter th of the series is expressed as follows:
which generalizes to:
and:
for fixed . The correspondence sets as a unit magnitude that partitions across powers, where each interval to , to , etc., corresponds to one unit, illustrating that forms a divergent series as .
These approximations extend to the real-valued domain through the interpolated harmonic number. For example, where :
The natural logarithm is asymptotically related to the harmonic numbers by the Stirling numbers [19] and the Gregory coefficients [20] . By representing in terms of Stirling numbers of the first kind, the harmonic number difference is alternatively expressed as follows, for fixed :
The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquity in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".
In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:
In mathematics, the logarithm to baseb is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logb x. When the base is clear from the context or is irrelevant it is sometimes written log x.
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.
In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if A convergent series that is not absolutely convergent is called conditionally convergent.
In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; often said as "b to the power n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: In particular, .
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:
In information theory, the asymptotic equipartition property (AEP) is a general property of the output samples of a stochastic source. It is fundamental to the concept of typical set used in theories of data compression.
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.
The rectangular function is defined as
In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related:
In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, a local martingale is not in general a martingale, because its expectation can be distorted by large values of small probability. In particular, a driftless diffusion process is a local martingale, but not necessarily a martingale.
This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus.
In mathematics, the natural logarithm of 2 is the unique real number argument such that the exponential function equals two. It appears regularly in various formulas and is also given by the alternating harmonic series. The decimal value of the natural logarithm of 2 truncated at 30 decimal places is given by:
{{cite web}}
: CS1 maint: archived copy as title (link)