ACP6 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | ACP6 , ACPL1, LPAP, PACPL1, acid phosphatase 6, lysophosphatidic | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 611471 MGI: 1931010 HomoloGene: 41128 GeneCards: ACP6 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Lysophosphatidic acid phosphatase type 6 is an acid phosphatase enzyme that is encoded in humans by the ACP6 gene. [5] [6]
It acts as a phosphomonoesterase at low pHs. [7] It is responsible for the hydrolysis of Lysophosphatidic acids (LPAs) to their respective monoacylglycerols and the release a free phosphate group in the process. [8] The enzyme has higher activity for myristate-LPA (14 carbon chain), oleate-LPA (18 carbon chain and one unsaturated carbon-carbon bond), laurate-LPA (12 carbon chain) or palmitate-LPA (16 carbon chain). When the substrate is stearate-LPA (18 carbon chain), the enzyme has reduced activity. [9] Phosphatidic acids can also be hydrolyzed by lysophosphatidic acid phosphatase, but at a significantly lower rate. The addition of the second fatty chain makes fitting into the active site much harder. [10]
LPAs are necessary for healthy cell growth, survival and pro-angiogenic factors for both in vivo and in vitro cells. Unbalanced concentrations of lysophosphatidic acid phosphatase can frequently lead to unbalanced LPA concentrations, which can cause metabolic disorders, and lead to ovarian cancer in women. [11] [12] [13]
Lysophosphatidic acid phosphatase is a monomer composed of two domains. One domain functions as a cap on the enzyme, while the second comprises the body of the enzyme. The enzyme has two (α) alpha helices on one side, seven (β) beta sheets in the middle, and two more α helices on the opposite side. [14] The space between the two domains serves as a large substrate pocket, as well as a channel through which water molecules can move through. [14] This channel is lined with hydrophilic residues that lead the water molecule to the active site, where the terminal water molecule interacts with Asp-335 residue and is then activated. This catalyzes the bond formation to the phosphate group. Lysophosphatidic acid phosphatase also has two disulfide bridges. One that binds α12 and α4 together, and the other that binds a turn at the edge of β7 strand. Analysis of the pocket shows that the active site pocket has space for one long fatty acid chain, but not for two fatty chains, furthermore supporting that this enzyme has strong preference for LPAs. [14]
The active site of lysophosphatidic acid phosphatase has six main residues required to stabilize the phosphate group and the hydroxyl. These residues are Arg-58, His-59, Arg-62, Arg-168, His-334, Asp-335. Though there are no crystal structures with a LPA molecule in the substrate pocket, the crystal structure with malonate shows the hydrogen bonding between the enzyme residues and the carbonyl groups that would stabilize the phosphate and hydroxyl groups on the LPA. In the active site, the phosphate group is stabilized by Arg-58, Arg-62, Arg-168 and His-334. The guanidinium groups and hydrogen on the protonated imidazole ring from the histidine residue. [14] When any of these residues were mutated to alanine, the catalytic activity of the enzyme was greatly reduced. This is evidence that the active site requires this "claw" to hold on to the phosphate group, the aspartic acid residue to activate a water molecule, and the histidine residue to provide a proton to form the alcohol. When the residues at the entrance to the water channel were mutated to bulkier residues, such as Leucine, Phenylalanine or Tryptophan, the enzyme was no longer capable of hydrolyzing the LPA. This further supports the proposed mechanism in which water, supplied from the solvent through the channel, acts as a nucleophile in the active site. [14]
Lysophosphatidic acid phosphatase has a very similar reaction mechanism to those of other phosphomonoesterases. One significant difference is this enzymes ability to perform the desired hydrolysis most effectively at low pHs. [15] At low pHs, all the arginines and histidines are found in their protonated states. This ensures that Arg58, Arg62, Arg168 and His334 will be able to stabilize the phosphate group and hydroxyl group in the active site. The aspartic acid side chain has a pKa of approximately 4. In an acidic environment, this residue will readily give up its proton, but will also take a proton away from water if the side chain is deprotonized, thus catalyzing the hydroxyl attack on the phosphate group. Soon after the deprotonation of the histidine residue and the protonation of the aspartic acid residue, the histidine residue will deprotonate the aspartic acid residue, preparing the enzyme to hydrolyze an LPA again. [14]
Lysophosphatidic acid phosphatase has several roles. Although lysophosphatidic acid phosphatase is found ubiquitously throughout the body with higher levels in the kidney, heart, small intestine, muscles and the liver, evidence suggests that this enzyme is regulates lipid metabolism in the mitochondria. [16]
Another function is to control the concentration of LPAs that serve as messengers for G protein-coupled receptors in the cell. These LPAs are responsible for the signaling of cell growth, proliferation, muscle contractions, and wound healing, among many other roles. [17] Due to this role, an imbalance in the concentrations of lysophosphatidic acid phosphatase can frequently lead to several metabolic diseases. [8]
Lysophosphatidic acid phosphatase is also responsible for the digestion of lysophosphatidic acids when the cell enters a state of phosphate starvation. These enzymes break down LPAs and release phosphate groups. This stops the production of phospholipids and phosphatidic acids to signal the end of a cell's proliferation process. [18]
Two examples of disorders caused by irregular LPA levels and show increased enzyme activity are ovarian cancer and Gaucher's Disease.
Lysophosphatidic acid phosphatase activity is used to detect and to quantify irregular levels of LPAs on a cell's surface. [12] LPAs are receptor-active mediators that promote cell motility, cell growth and cell survival. [11] [13] There is clear evidence that cancerous ovarian cells have an increased level of LPA concentrations on their cell surfaces. These LPAs leak from the cell surface into the blood stream. The high levels of LPAs in the blood are used as tumor markers. In these cell clusters, lysophosphatidic acid phosphatase activity is higher than it is in regular cells. This can be attributed to the significantly increased levels of LPA that are secreted and synthesized by the ovarian cancer cells. This helps explain the cancerous cell's radical behavior and uncontrollable proliferation caused by the imbalance of enzyme and substrate concentrations, therefore leading to the inability to turn off the LPA cascade signalling effectively. [11] [19] One possible way to address and treat ovarian cancer cell proliferation would be to increase the concentration of lysophosphatidic acid phosphatase on the cell's surface, thus decreasing the amount of LPAs available to signal the cell to proceed with its radical behavior. [20]
Gaucher's Disease is another disorder in which lysophosphatidic acid phosphatase is found in irregular concentrations. Increased concentration levels of lysophosphatidic acid phosphatase and enzyme activity in a patient's blood are used in order to aid in the diagnosis of Gaucher's Disease. The increased activity can be attributed to the excess of LPAs in the serum. Gaucher's Disease is caused by an accumulation of glucosphingolipids in the body tissues and bone marrow. LPAs are a precursor of sphingolipids, so although lysophosphatidic acid phosphatase is not directly responsible for the imbalance that leads to Gaucher's Disease, its activity can be used to support the diagnosis of the disease. It is important to note that even though the increased activity of the enzyme has been found in patients with Gaucher's Disease, there has been no clear relation between the enzyme and the progression of the disease. [21]
ACP6 has been shown to interact with Integrin-linked kinase. [22]
A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a functional change of the target protein (substrate) by changing enzyme activity, cellular location, or association with other proteins. The human genome contains about 500 protein kinase genes and they constitute about 2% of all human genes. There are two main types of protein kinase. The great majority are serine/threonine kinases, which phosphorylate the hydroxyl groups of serines and threonines in their targets. Most of the others are tyrosine kinases, although additional types exist. Protein kinases are also found in bacteria and plants. Up to 30% of all human proteins may be modified by kinase activity, and kinases are known to regulate the majority of cellular pathways, especially those involved in signal transduction.
A protein phosphatase is a phosphatase enzyme that removes a phosphate group from the phosphorylated amino acid residue of its substrate protein. Protein phosphorylation is one of the most common forms of reversible protein posttranslational modification (PTM), with up to 30% of all proteins being phosphorylated at any given time. Protein kinases (PKs) are the effectors of phosphorylation and catalyse the transfer of a γ-phosphate from ATP to specific amino acids on proteins. Several hundred PKs exist in mammals and are classified into distinct super-families. Proteins are phosphorylated predominantly on Ser, Thr and Tyr residues, which account for 79.3, 16.9 and 3.8% respectively of the phosphoproteome, at least in mammals. In contrast, protein phosphatases (PPs) are the primary effectors of dephosphorylation and can be grouped into three main classes based on sequence, structure and catalytic function. The largest class of PPs is the phosphoprotein phosphatase (PPP) family comprising PP1, PP2A, PP2B, PP4, PP5, PP6 and PP7, and the protein phosphatase Mg2+- or Mn2+-dependent (PPM) family, composed primarily of PP2C. The protein Tyr phosphatase (PTP) super-family forms the second group, and the aspartate-based protein phosphatases the third. The protein pseudophosphatases form part of the larger phosphatase family, and in most cases are thought to be catalytically inert, instead functioning as phosphate-binding proteins, integrators of signalling or subcellular traps. Examples of membrane-spanning protein phosphatases containing both active (phosphatase) and inactive (pseudophosphatase) domains linked in tandem are known, conceptually similar to the kinase and pseudokinase domain polypeptide structure of the JAK pseudokinases. A complete comparative analysis of human phosphatases and pseudophosphatases has been completed by Manning and colleagues, forming a companion piece to the ground-breaking analysis of the human kinome, which encodes the complete set of ~536 human protein kinases.
In biochemistry, a kinase is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule donates a phosphate group to the substrate molecule. This transesterification produces a phosphorylated substrate and ADP. Conversely, it is referred to as dephosphorylation when the phosphorylated substrate donates a phosphate group and ADP gains a phosphate group. These two processes, phosphorylation and dephosphorylation, occur four times during glycolysis.
Phosphofructokinase-1 (PFK-1) is one of the most important regulatory enzymes of glycolysis. It is an allosteric enzyme made of 4 subunits and controlled by many activators and inhibitors. PFK-1 catalyzes the important "committed" step of glycolysis, the conversion of fructose 6-phosphate and ATP to fructose 1,6-bisphosphate and ADP. Glycolysis is the foundation for respiration, both anaerobic and aerobic. Because phosphofructokinase (PFK) catalyzes the ATP-dependent phosphorylation to convert fructose-6-phosphate into fructose 1,6-bisphosphate and ADP, it is one of the key regulatory steps of glycolysis. PFK is able to regulate glycolysis through allosteric inhibition, and in this way, the cell can increase or decrease the rate of glycolysis in response to the cell's energy requirements. For example, a high ratio of ATP to ADP will inhibit PFK and glycolysis. The key difference between the regulation of PFK in eukaryotes and prokaryotes is that in eukaryotes PFK is activated by fructose 2,6-bisphosphate. The purpose of fructose 2,6-bisphosphate is to supersede ATP inhibition, thus allowing eukaryotes to have greater sensitivity to regulation by hormones like glucagon and insulin.
Glycerophospholipids or phosphoglycerides are glycerol-based phospholipids. They are the main component of biological membranes in eukaryotic cells. They are a type of lipid, of which its composition affects membrane structure and properties. Two major classes are known: those for bacteria and eukaryotes and a separate family for archaea.
Transketolase is an enzyme that, in humans, is encoded by the TKT gene. It participates in both the pentose phosphate pathway in all organisms and the Calvin cycle of photosynthesis. Transketolase catalyzes two important reactions, which operate in opposite directions in these two pathways. In the first reaction of the non-oxidative pentose phosphate pathway, the cofactor thiamine diphosphate accepts a 2-carbon fragment from a 5-carbon ketose (D-xylulose-5-P), then transfers this fragment to a 5-carbon aldose (D-ribose-5-P) to form a 7-carbon ketose (sedoheptulose-7-P). The abstraction of two carbons from D-xylulose-5-P yields the 3-carbon aldose glyceraldehyde-3-P. In the Calvin cycle, transketolase catalyzes the reverse reaction, the conversion of sedoheptulose-7-P and glyceraldehyde-3-P to pentoses, the aldose D-ribose-5-P and the ketose D-xylulose-5-P.
The enzyme glucose 6-phosphatase (EC 3.1.3.9, G6Pase; systematic name D-glucose-6-phosphate phosphohydrolase) catalyzes the hydrolysis of glucose 6-phosphate, resulting in the creation of a phosphate group and free glucose:
β-Glucocerebrosidase is an enzyme with glucosylceramidase activity that cleaves by hydrolysis the β-glycosidic linkage of the chemical glucocerebroside, an intermediate in glycolipid metabolism that is abundant in cell membranes. It is localized in the lysosome, where it remains associated with the lysosomal membrane. β-Glucocerebrosidase is 497 amino acids in length and has a molecular mass of 59,700 Da.
Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.
Phospholipase D (EC 3.1.4.4, lipophosphodiesterase II, lecithinase D, choline phosphatase, PLD; systematic name phosphatidylcholine phosphatidohydrolase) is an enzyme of the phospholipase superfamily that catalyses the following reaction
Phosphoenolpyruvate carboxylase (also known as PEP carboxylase, PEPCase, or PEPC; EC 4.1.1.31, PDB ID: 3ZGE) is an enzyme in the family of carboxy-lyases found in plants and some bacteria that catalyzes the addition of bicarbonate (HCO3−) to phosphoenolpyruvate (PEP) to form the four-carbon compound oxaloacetate and inorganic phosphate:
Phosphoglycerate mutase (PGM) is any enzyme that catalyzes step 8 of glycolysis - the internal transfer of a phosphate group from C-3 to C-2 which results in the conversion of 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG) through a 2,3-bisphosphoglycerate intermediate. These enzymes are categorized into the two distinct classes of either cofactor-dependent (dPGM) or cofactor-independent (iPGM). The dPGM enzyme is composed of approximately 250 amino acids and is found in all vertebrates as well as in some invertebrates, fungi, and bacteria. The iPGM class is found in all plants and algae as well as in some invertebrate, fungi, and Gram-positive bacteria. This class of PGM enzyme shares the same superfamily as alkaline phosphatase.
Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can synthesize 11 of the 20 standard amino acids. These 11 are called the non-essential amino acids).
Sphingosine-1-phosphate (S1P) is a signaling sphingolipid, also known as lysosphingolipid. It is also referred to as a bioactive lipid mediator. Sphingolipids at large form a class of lipids characterized by a particular aliphatic aminoalcohol, which is sphingosine.
A lysophosphatidic acid (LPA) is a phospholipid derivative that can act as a signaling molecule.
Autotaxin, also known as ectonucleotide pyrophosphatase/phosphodiesterase family member 2, is an enzyme that in humans is encoded by the ENPP2 gene.
Diphosphomevalonate decarboxylase (EC 4.1.1.33), most commonly referred to in scientific literature as mevalonate diphosphate decarboxylase, is an enzyme that catalyzes the chemical reaction
Lysophosphatidic acid receptor 2 also known as LPA2 is a protein that in humans is encoded by the LPAR2 gene. LPA2 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).
Lipid phosphate phosphohydrolase 1 also known as phosphatidic acid phosphatase 2a is an enzyme that in humans is encoded by the PPAP2A gene.
Lipid phosphate phosphohydrolase 3 (LPP3), also known as phospholipid phosphatase 3 (PLPP3) and phosphatidic acid phosphatase type 2B, is an enzyme that in humans is encoded by the PPAP2B gene on chromosome 1. It is ubiquitously expressed in many tissues and cell types. LPP3 is a cell-surface glycoprotein that hydrolyzes extracellular lysophosphatidic acid (LPA) and short-chain phosphatidic acid. Its function allows it to regulate vascular and embryonic development by inhibiting LPA signaling, which is associated with a wide range of human diseases, including cardiovascular disease and cancer, as well as developmental defects. The PPAP2B gene also contains one of 27 loci associated with increased risk of coronary artery disease.