M-Toluic acid

Last updated
m-Toluic acid [1]
3-toluic acid.svg
M-Toluic-acid-3D-balls.png
Names
Preferred IUPAC name
3-Methylbenzoic acid
Other names
meta-Toluic acid
m-Methylbenzoic acid
meta-Methylbenzoic acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.002.476 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 247-107-0
KEGG
PubChem CID
UNII
  • InChI=1S/C8H8O2/c1-6-3-2-4-7(5-6)8(9)10/h2-5H,1H3,(H,9,10) X mark.svgN
    Key: GPSDUZXPYCFOSQ-UHFFFAOYSA-N X mark.svgN
  • CC1=CC=CC(=C1)C(=O)O
Properties
C8H8O2
Molar mass 136.15 g/mol
Density 1.05 g/cm3, solid
Melting point 111 to 113 °C (232 to 235 °F; 384 to 386 K)
Boiling point 263 °C (505 °F; 536 K)
Acidity (pKa)4.27 (in water) [2]
Hazards
Safety data sheet (SDS) External MSDS
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

m-Toluic acid, (IUPAC: 3-methylbenzoic acid), is an aromatic carboxylic acid, with formula (CH3)C6H4(COOH). It is an isomer of p-toluic acid and o-toluic acid.

Contents

Preparation

m-toluic acid is often prepared in the laboratory by refluxing m-xylene with either nitric acid or potassium permanganate, oxidizing one of the methyl groups to COOH.

Uses

It serves, among other purposes, as a precursor to DEET (N,N-diethyl-m-toluamide), the well-known insect repellent. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Friedel–Crafts reaction</span> Set of reactions to attach substituents to an aromatic ring

The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution.

<span class="mw-page-title-main">Potassium permanganate</span> Chemical compound

Potassium permanganate is an inorganic compound with the chemical formula KMnO4. It is a purplish-black crystalline salt, that dissolves in water as K+ and MnO
4
, an intensely pink to purple solution.

In organic chemistry, an acyl chloride is an organic compound with the functional group −C(=O)Cl. Their formula is usually written R−COCl, where R is a side chain. They are reactive derivatives of carboxylic acids. A specific example of an acyl chloride is acetyl chloride, CH3COCl. Acyl chlorides are the most important subset of acyl halides.

<span class="mw-page-title-main">Cinnamic acid</span> Chemical compound

Cinnamic acid is an organic compound with the formula C6H5-CH=CH-COOH. It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Classified as an unsaturated carboxylic acid, it occurs naturally in a number of plants. It exists as both a cis and a trans isomer, although the latter is more common.

<span class="mw-page-title-main">Sodium acetate</span> Chemical compound

Sodium acetate, CH3COONa, also abbreviated NaOAc, is the sodium salt of acetic acid. This colorless deliquescent salt has a wide range of uses.

The Kolbe electrolysis or Kolbe reaction is an organic reaction named after Hermann Kolbe. The Kolbe reaction is formally a decarboxylative dimerisation of two carboxylic acids. The overall reaction is:

Retrosynthetic analysis is a technique for solving problems in the planning of organic syntheses. This is achieved by transforming a target molecule into simpler precursor structures regardless of any potential reactivity/interaction with reagents. Each precursor material is examined using the same method. This procedure is repeated until simple or commercially available structures are reached. These simpler/commercially available compounds can be used to form a synthesis of the target molecule. E.J. Corey formalized this concept in his book The Logic of Chemical Synthesis.

In retrosynthetic analysis, a synthon is a hypothetical unit within a target molecule that represents a potential starting reagent in the retroactive synthesis of that target molecule. The term was coined in 1967 by E. J. Corey. He noted in 1988 that the "word synthon has now come to be used to mean synthetic building block rather than retrosynthetic fragmentation structures". It was noted in 1998 that the phrase did not feature very prominently in Corey's 1981 book The Logic of Chemical Synthesis, as it was not included in the index. Because synthons are charged, when placed into a synthesis a neutral form is found commercially instead of forming and using the potentially very unstable charged synthons.

p-Toluic acid (4-methylbenzoic acid) is a substituted benzoic acid with the formula CH3C6H4CO2H. It is a white solid that is poorly soluble in water but soluble in acetone. A laboratory route to p-toluic acid involves oxidation of p-cymene with nitric acid.

<span class="mw-page-title-main">Palladium(II) acetate</span> Chemical compound

Palladium(II) acetate is a chemical compound of palladium described by the formula [Pd(O2CCH3)2]n, abbreviated [Pd(OAc)2]n. It is more reactive than the analogous platinum compound. Depending on the value of n, the compound is soluble in many organic solvents and is commonly used as a catalyst for organic reactions.

<span class="mw-page-title-main">Amitraz</span> Chemical compound

Amitraz is a non-systemic acaricide and insecticide and has also been described as a scabicide. It was first synthesized by the Boots Co. in England in 1969. Amitraz has been found to have an insect repellent effect, works as an insecticide and also as a pesticide synergist. Its effectiveness is traced back on alpha-adrenergic agonist activity, interaction with octopamine receptors of the central nervous system and inhibition of monoamine oxidases and prostaglandin synthesis. Therefore, it leads to overexcitation and consequently paralysis and death in insects. Because amitraz is less harmful to mammals, amitraz is among many other purposes best known as insecticide against mite- or tick-infestation of dogs. It is also widely used in the beekeeping industry as a control for the Varroa destructor mite, although there are recent reports of resistance.

<i>o</i>-Toluic acid Chemical compound

o-Toluic acid, also 2-methylbenzoic acid, is an aromatic carboxylic acid, with formula (CH3)C6H4(COOH). It is an isomer of p-toluic acid and m-toluic acid. When purified and recrystallized, o-toluic acid forms needle-shaped crystals. o-Toluic acid was first noticed by Sir William Ramsay, credited discoverer of the noble gases and winner of the 1904 Nobel Prize in Chemistry.

Carbamic acid, which might also be called aminoformic acid or aminocarboxylic acid, is the chemical compound with the formula H2NCOOH. It can be obtained by the reaction of ammonia NH3 and carbon dioxide CO2 at very low temperatures, which also yields ammonium carbamate [NH4]+[NH2CO2]. The compound is stable only up to about 250 K (−23 °C); at higher temperatures it decomposes into those two gases. The solid apparently consists of dimers, with the two molecules connected by hydrogen bonds between the two carboxyl groups –COOH.

<span class="mw-page-title-main">Cannabichromene</span> Chemical compound

Cannabichromene (CBC), also called cannabichrome, cannanbichromene, pentylcannabichromene or cannabinochromene, is an anti-inflammatory which may contribute to the pain-killing effect of cannabis. It is one of the hundreds of cannabinoids found in the Cannabis plant, and is therefore a phytocannabinoid. It bears structural similarity to the other natural cannabinoids, including tetrahydrocannabinol (THC), tetrahydrocannabivarin (THCV), cannabidiol (CBD), and cannabinol (CBN), among others. CBC and its derivatives are as abundant as cannabinols in cannabis. It is not scheduled by the Convention on Psychotropic Substances. It is more common in tropical cannabis varieties.

<span class="mw-page-title-main">Trifluoroacetic anhydride</span> Chemical compound

Trifluoroacetic anhydride (TFAA) is the acid anhydride of trifluoroacetic acid. It is the perfluorinated derivative of acetic anhydride.

<span class="mw-page-title-main">Acetic acid</span> Colorless and faint organic acid found in vinegar

Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH. Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water and other trace elements.

<span class="mw-page-title-main">Endiandric acid C</span> Chemical compound

Endiandric acid C, isolated from the tree Endiandra introrsa, is a well characterized chemical compound. Endiadric acid C is reported to have better antibiotic activity than ampicillin.

In chemistry, decarbonylation is a type of organic reaction that involves the loss of carbon monoxide (CO). It is often an undesirable reaction, since it represents a degradation. In the chemistry of metal carbonyls, decarbonylation describes a substitution process, whereby a CO ligand is replaced by another ligand.

Decarboxylative cross coupling reactions are chemical reactions in which a carboxylic acid is reacted with an organic halide to form a new carbon-carbon bond, concomitant with loss of CO2. Aryl and alkyl halides participate. Metal catalyst, base, and oxidant are required.

<span class="mw-page-title-main">Trifluoroperacetic acid</span> Chemical compound

Trifluoroperacetic acid is an organofluorine compound, the peroxy acid analog of trifluoroacetic acid, with the condensed structural formula CF
3
COOOH
. It is a strong oxidizing agent for organic oxidation reactions, such as in Baeyer–Villiger oxidations of ketones. It is the most reactive of the organic peroxy acids, allowing it to successfully oxidise relatively unreactive alkenes to epoxides where other peroxy acids are ineffective. It can also oxidise the chalcogens in some functional groups, such as by transforming selenoethers to selones. It is a potentially explosive material and is not commercially available, but it can be quickly prepared as needed. Its use as a laboratory reagent was pioneered and developed by William D. Emmons.

References

  1. M-TOLUIC ACID - Compound Summary, PubChem.
  2. "Dissociation Constants Of Organic Acids And Bases" . Retrieved 11 April 2010.
  3. Wang, Benjamin J-S. (1974). "An interesting and successful organic experiment (CEC)". J. Chem. Educ. 51 (10): 631. doi:10.1021/ed051p631.2.
  4. Donald L. Pavia (2004). Introduction to organic laboratory techniques (Google Books excerpt). Cengage Learning. pp. 370–376. ISBN   978-0-534-40833-6.