MAD2L1

Last updated
MAD2L1
Protein MAD2L1 PDB 1duj.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases MAD2L1 , HSMAD2, MAD2, MAD2 mitotic arrest deficient-like 1 (yeast), mitotic arrest deficient 2 like 1
External IDs OMIM: 601467 MGI: 1860374 HomoloGene: 1768 GeneCards: MAD2L1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002358

NM_019499
NM_001355624

RefSeq (protein)

NP_002349

NP_062372
NP_001342553

Location (UCSC) Chr 4: 120.06 – 120.07 Mb Chr 6: 66.51 – 66.52 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Mitotic spindle assembly checkpoint protein MAD2A is a protein that in humans is encoded by the MAD2L1 gene. [5] [6] [7]

Contents

Function

MAD2L1 is a component of the mitotic spindle assembly checkpoint that prevents the onset of anaphase until all chromosomes are properly aligned at the metaphase plate. MAD2L1 is related to the MAD2L2 gene located on chromosome 1. A MAD2 pseudogene has been mapped to chromosome 14. [7]

Interactions

MAD2L1 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Spindle checkpoint</span> Cell cycle checkpoint

The spindle checkpoint, also known as the metaphase-to-anaphase transition, the spindle assembly checkpoint (SAC), the metaphase checkpoint, or the mitotic checkpoint, is a cell cycle checkpoint during mitosis or meiosis that prevents the separation of the duplicated chromosomes (anaphase) until each chromosome is properly attached to the spindle. To achieve proper segregation, the two kinetochores on the sister chromatids must be attached to opposite spindle poles. Only this pattern of attachment will ensure that each daughter cell receives one copy of the chromosome. The defining biochemical feature of this checkpoint is the stimulation of the anaphase-promoting complex by M-phase cyclin-CDK complexes, which in turn causes the proteolytic destruction of cyclins and proteins that hold the sister chromatids together.

<span class="mw-page-title-main">Kinetochore</span> Protein complex that allows microtubules to attach to chromosomes during cell division

A kinetochore is a disc-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers attach during cell division to pull sister chromatids apart. The kinetochore assembles on the centromere and links the chromosome to microtubule polymers from the mitotic spindle during mitosis and meiosis. The term kinetochore was first used in a footnote in a 1934 Cytology book by Lester W. Sharp and commonly accepted in 1936. Sharp's footnote reads: "The convenient term kinetochore has been suggested to the author by J. A. Moore", likely referring to John Alexander Moore who had joined Columbia University as a freshman in 1932.

Mad2 is an essential spindle checkpoint protein. The spindle checkpoint system is a regulatory system that restrains progression through the metaphase-to-anaphase transition. The Mad2 gene was first identified in the yeast S. cerevisiae in a screen for genes which when mutated would confer sensitivity to microtubule poisons. The human orthologues of Mad2 were first cloned in a search for human cDNAs that would rescue the microtubule poison-sensitivity of a yeast strain in which a kinetochore binding protein was missing. The protein was shown to be present at unattached kinetochores and antibody inhibition studies demonstrated it was essential to execute a block in the metaphase-to-anaphase transition in response to the microtubule poison nocodazole. Subsequent cloning of the Xenopus laevis orthologue, facilitated by the sharing of the human sequence, allowed for the characterization of the mitotic checkpoint in egg extracts.

<span class="mw-page-title-main">Aurora kinase B</span> Protein

Aurora kinase B is a protein that functions in the attachment of the mitotic spindle to the centromere.

<span class="mw-page-title-main">CDC20</span> Protein-coding gene in the species Homo sapiens

The cell division cycle protein 20 homolog is an essential regulator of cell division that is encoded by the CDC20 gene in humans. To the best of current knowledge its most important function is to activate the anaphase promoting complex (APC/C), a large 11-13 subunit complex that initiates chromatid separation and entrance into anaphase. The APC/CCdc20 protein complex has two main downstream targets. Firstly, it targets securin for destruction, enabling the eventual destruction of cohesin and thus sister chromatid separation. It also targets S and M-phase (S/M) cyclins for destruction, which inactivates S/M cyclin-dependent kinases (Cdks) and allows the cell to exit from mitosis. A closely related protein, Cdc20homologue-1 (Cdh1) plays a complementary role in the cell cycle.

<span class="mw-page-title-main">BUB1B</span> Protein-coding gene in the species Homo sapiens

Mitotic checkpoint serine/threonine-protein kinase BUB1 beta is an enzyme that in humans is encoded by the BUB1B gene. Also known as BubR1, this protein is recognized for its mitotic roles in the spindle assembly checkpoint (SAC) and kinetochore-microtubule interactions that facilitate chromosome migration and alignment. BubR1 promotes mitotic fidelity and protects against aneuploidy by ensuring proper chromosome segregation between daughter cells. BubR1 is proposed to prevent tumorigenesis.

<span class="mw-page-title-main">CDC27</span> Protein-coding gene in the species Homo sapiens

Cell division cycle protein 27 homolog is a protein that in humans is encoded by the CDC27 gene.

<span class="mw-page-title-main">CDC16</span> Protein-coding gene in the species Homo sapiens

Cell division cycle protein 16 homolog is a protein that in humans is encoded by the CDC16 gene.

<span class="mw-page-title-main">KIF2C</span> Protein-coding gene in the species Homo sapiens

Kinesin-like protein KIF2C is a protein that in humans is encoded by the KIF2C gene.

<span class="mw-page-title-main">BUB3</span> Protein-coding gene in the species Homo sapiens

Mitotic checkpoint protein BUB3 is a protein that in humans is encoded by the BUB3 gene.

<span class="mw-page-title-main">MAD2L2</span> Protein-coding gene in the species Homo sapiens

Mitotic spindle assembly checkpoint protein MAD2B is a protein that in humans is encoded by the MAD2L2 gene.

<span class="mw-page-title-main">TTK (gene)</span> Protein-coding gene in the species Homo sapiens

Dual specificity protein kinase TTK also known as Mps1 is an enzyme that in humans is encoded by the TTK gene.

<span class="mw-page-title-main">NUF2</span> Protein-coding gene in the species Homo sapiens

Kinetochore protein Nuf2 is a protein that in humans is encoded by the NUF2 gene.

<span class="mw-page-title-main">ANAPC1</span> Protein-coding gene in the species Homo sapiens

Anaphase-promoting complex subunit 1 is an enzyme that in humans is encoded by the ANAPC1 gene.

<span class="mw-page-title-main">ZW10</span>

Centromere/kinetochore protein zw10 homolog is a protein that in humans is encoded by the ZW10 gene. This gene encodes a protein that is one of many involved in mechanisms to ensure proper chromosome segregation during cell division. The encoded protein binds to centromeres during the prophase, metaphase, and early anaphase cell division stages and to kinetochore microtubules during metaphase.

<span class="mw-page-title-main">PRC1</span> Protein-coding gene in the species Homo sapiens

Protein Regulator of cytokinesis 1 (PRC1) is a protein that in humans is encoded by the PRC1 gene and is involved in cytokinesis.

<span class="mw-page-title-main">ANAPC5</span> Protein-coding gene in the species Homo sapiens

Anaphase-promoting complex subunit 5 is an enzyme that in humans is encoded by the ANAPC5 gene.

<span class="mw-page-title-main">ANAPC7</span> Protein-coding gene in the species Homo sapiens

Anaphase-promoting complex subunit 7 is an enzyme that in humans is encoded by the ANAPC7 gene. Multiple transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">Mad1</span>

Mad1 is a non-essential protein which in yeast has a function in the spindle assembly checkpoint (SAC). This checkpoint monitors chromosome attachment to spindle microtubules and prevents cells from starting anaphase until the spindle is built up. The name Mad refers to the observation that mutant cells are mitotic arrest deficient (MAD) during microtubule depolymerization. Mad1 recruits the anaphase inhibitor Mad2 to unattached kinetochores and is essential for Mad2-Cdc20 complex formation in vivo but not in vitro. In vivo, Mad1 acts as a competitive inhibitor of the Mad2-Cdc20 complex. Mad1 is phosphorylated by Mps1 which then leads together with other activities to the formation of the mitotic checkpoint complex (MCC). Thereby it inhibits the activity of the anaphase-promoting complex/cyclosome (APC/C). Homologues of Mad1 are conserved in eukaryotes from yeast to mammals.

<span class="mw-page-title-main">HORMA domain</span>

In molecular biology, the HORMA domain is a protein domain that has been suggested to recognise chromatin states resulting from DNA adducts, double stranded breaks or non-attachment to the spindle and act as an adaptor that recruits other proteins. Hop1 is a meiosis-specific protein, Rev7 is required for DNA damage induced mutagenesis, and MAD2 is a spindle checkpoint protein which prevents progression of the cell cycle upon detection of a defect in mitotic spindle integrity.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000164109 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000029910 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Li Y, Benezra R (October 1996). "Identification of a human mitotic checkpoint gene: hsMAD2". Science. 274 (5285): 246–8. Bibcode:1996Sci...274..246L. doi:10.1126/science.274.5285.246. PMID   8824189. S2CID   41334564.
  6. Xu L, Deng HX, Yang Y, Xia JH, Hung WY, Siddque T (November 1997). "Assignment of mitotic arrest deficient protein 2 (MAD2L1) to human chromosome band 5q23.3 by in situ hybridization". Cytogenet. Cell Genet. 78 (1): 63–4. doi:10.1159/000134631. PMID   9345911.
  7. 1 2 "Entrez Gene: MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast)".
  8. Nelson KK, Schlöndorff J, Blobel CP (November 1999). "Evidence for an interaction of the metalloprotease-disintegrin tumour necrosis factor alpha convertase (TACE) with mitotic arrest deficient 2 (MAD2), and of the metalloprotease-disintegrin MDC9 with a novel MAD2-related protein, MAD2beta". Biochem. J. 343 (3): 673–80. doi:10.1042/0264-6021:3430673. PMC   1220601 . PMID   10527948.
  9. Poghosyan Z, Robbins SM, Houslay MD, Webster A, Murphy G, Edwards DR (February 2002). "Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases". J. Biol. Chem. 277 (7): 4999–5007. doi: 10.1074/jbc.M107430200 . PMID   11741929.
  10. Sudakin V, Chan GK, Yen TJ (September 2001). "Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2". J. Cell Biol. 154 (5): 925–36. doi:10.1083/jcb.200102093. PMC   2196190 . PMID   11535616.
  11. Zhang Y, Lees E (August 2001). "Identification of an overlapping binding domain on Cdc20 for Mad2 and anaphase-promoting complex: model for spindle checkpoint regulation". Mol. Cell. Biol. 21 (15): 5190–9. doi:10.1128/MCB.21.15.5190-5199.2001. PMC   87243 . PMID   11438673.
  12. Sihn CR, Suh EJ, Lee KH, Kim TY, Kim SH (November 2003). "p55CDC/hCDC20 mutant induces mitotic catastrophe by inhibiting the MAD2-dependent spindle checkpoint activity in tumor cells". Cancer Lett. 201 (2): 203–10. doi:10.1016/s0304-3835(03)00465-8. PMID   14607335.
  13. Luo X, Fang G, Coldiron M, Lin Y, Yu H, Kirschner MW, Wagner G (March 2000). "Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20". Nat. Struct. Biol. 7 (3): 224–9. doi:10.1038/73338. PMID   10700282. S2CID   1721494.
  14. 1 2 Sironi L, Melixetian M, Faretta M, Prosperini E, Helin K, Musacchio A (November 2001). "Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint". EMBO J. 20 (22): 6371–82. doi:10.1093/emboj/20.22.6371. PMC   125308 . PMID   11707408.
  15. D'Angiolella V, Mari C, Nocera D, Rametti L, Grieco D (October 2003). "The spindle checkpoint requires cyclin-dependent kinase activity". Genes Dev. 17 (20): 2520–5. doi:10.1101/gad.267603. PMC   218146 . PMID   14561775.
  16. Kallio MJ, Beardmore VA, Weinstein J, Gorbsky GJ (September 2002). "Rapid microtubule-independent dynamics of Cdc20 at kinetochores and centrosomes in mammalian cells". J. Cell Biol. 158 (5): 841–7. doi:10.1083/jcb.200201135. PMC   2173153 . PMID   12196507.
  17. 1 2 Wassmann K, Benezra R (September 1998). "Mad2 transiently associates with an APC/p55Cdc complex during mitosis". Proc. Natl. Acad. Sci. U.S.A. 95 (19): 11193–8. Bibcode:1998PNAS...9511193W. doi: 10.1073/pnas.95.19.11193 . PMC   21618 . PMID   9736712.
  18. 1 2 Kallio M, Weinstein J, Daum JR, Burke DJ, Gorbsky GJ (June 1998). "Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events". J. Cell Biol. 141 (6): 1393–406. doi:10.1083/jcb.141.6.1393. PMC   2132789 . PMID   9628895.
  19. Fang G, Yu H, Kirschner MW (June 1998). "The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation". Genes Dev. 12 (12): 1871–83. doi:10.1101/gad.12.12.1871. PMC   316912 . PMID   9637688.
  20. Skoufias DA, Andreassen PR, Lacroix FB, Wilson L, Margolis RL (April 2001). "Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints". Proc. Natl. Acad. Sci. U.S.A. 98 (8): 4492–7. Bibcode:2001PNAS...98.4492S. doi: 10.1073/pnas.081076898 . PMC   31862 . PMID   11274370.
  21. Nilsson J, Yekezare M, Minshull J, Pines J (December 2008). "The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction". Nat. Cell Biol. 10 (12): 1411–20. doi:10.1038/ncb1799. PMC   2635557 . PMID   18997788.
  22. Privette LM, Weier JF, Nguyen HN, Yu X, Petty EM (July 2008). "Loss of CHFR in human mammary epithelial cells causes genomic instability by disrupting the mitotic spindle assembly checkpoint". Neoplasia. 10 (7): 643–52. doi:10.1593/neo.08176. PMC   2435002 . PMID   18592005.
  23. Poelzl G, Kasai Y, Mochizuki N, Shaul PW, Brown M, Mendelsohn ME (March 2000). "Specific association of estrogen receptor beta with the cell cycle spindle assembly checkpoint protein, MAD2". Proc. Natl. Acad. Sci. U.S.A. 97 (6): 2836–9. Bibcode:2000PNAS...97.2836P. doi: 10.1073/pnas.050580997 . PMC   16016 . PMID   10706629.
  24. 1 2 Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, Fishel R (February 2000). "A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2". J. Biol. Chem. 275 (6): 4391–7. doi: 10.1074/jbc.275.6.4391 . PMID   10660610.
  25. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID   16189514. S2CID   4427026.
  26. Liu YC, Pan J, Zhang C, Fan W, Collinge M, Bender JR, Weissman SM (April 1999). "A MHC-encoded ubiquitin-like protein (FAT10) binds noncovalently to the spindle assembly checkpoint protein MAD2". Proc. Natl. Acad. Sci. U.S.A. 96 (8): 4313–8. Bibcode:1999PNAS...96.4313L. doi: 10.1073/pnas.96.8.4313 . PMC   16329 . PMID   10200259.

Further reading