This article includes a list of general references, but it lacks sufficient corresponding inline citations .(July 2021) |
Developer | McGill University |
---|---|
Working state | Discontinued |
Initial release | 1972 |
Marketing target | Academic computing and the teaching of computer science |
Available in | English |
Platforms | S/360, S/370, and 4300-series mainframes |
Preceded by | RAX |
History of IBM mainframe operating systems |
---|
MUSIC/SP (Multi-User System for Interactive Computing/System Product; originally McGill University System for Interactive Computing) was developed at McGill University in the 1970s from an early IBM time-sharing system called RAX (Remote Access Computing System). [1] [2]
The system ran on IBM S/360, S/370, and 4300-series mainframe hardware, and offered then-novel features such as file access control and data compression. It was designed to allow academics and students to create and run their programs interactively on terminals, in an era when most mainframe computing was still being done from punched cards. Over the years, development continued and the system evolved to embrace email, the Internet and eventually the World Wide Web. At its peak in the late 1980s, there were over 200 universities, colleges and high school districts that used the system in North and South America, Europe and Asia.
MUSIC was originally designed as a stand-alone operating system but with the advent of IBM's virtual machine facility, VM/370, [3] it became more common to deploy MUSIC as a guest operating system running under VM/370.
Over the years the following people contributed to the MUSIC and MUSIC/SP systems. Roy Miller, Alan Greenberg, Wilf Mandel, Dave Edwards, Nelson Nguyen, Kevin McNamee, Don Farnsworth (IBM), Dean Daniele (IBM), Glen Matthews, Linda Chernabrow, Frank Pettinicchio, Earl Lindberg, Pierre Goyette, Kathy Wilmot, Simon Fulleringer, David Thorpe, Gerald Ratzer, Harry Williams (Marist College), Dave Juraschek (Northern Virginia Community Colleges), Christian Robert (Ecole Polytechnique), Simone Spiller, Silvino Mezzari, and Mike Short.
The MUSIC/SP file system was unique in a number of respects. There was a single system-wide file index. The owner's userid and the file name were hashed to locate the file in this index, so any file on the system could be located with a single I/O operation. However, this presented a flat file system to the user. It lacked the directory structure commonly offered by DOS, Microsoft Windows and Unix systems. In 1990 a "tree-structured" directory view of the file system was overlaid on this, bringing the system more in line with the file systems that were then available. By default the information stored in the files was compressed. This offered considerable saving in disk space. The file system had a fairly sophisticated access control scheme allowing the owner to control who could read, write, append to and execute the file. It also had the concept of a "public" file which was visible to all users and a "private" file which was only visible to the owner.
The initial versions of the system provided no support for virtual memory and address translation. Only one active user could reside in core memory at any time. Swapping (to disk) was used to time-share between different users, and a variable-length timeslice was used. Virtual memory support was introduced in 1985. This allowed multiple users to be in core memory at the same time, removed many of the restrictions in the size of the programs that could be run and provided a significant performance improvement. System performance was also improved by pre-loading commonly used modules into virtual memory at startup time where they could be available to all users simultaneously.
The system was designed to support academic computing and the teaching of computer science, so a rich suite of programming languages was available. The system nucleus was written in IBM/370 assembler but most of the native applications were written in FORTRAN. The system supported the Waterloo WATFIV and WATBOL compilers and also provided compilers for Pascal, C, PL/I, BASIC, APL, ALGOL, RPG, and GPSS. The system was missing a command scripting language until REXX was ported from CMS in 1984. Later, in 1986, a complete user interface was written entirely in REXX.
E-mail was one of the major applications on MUSIC/SP. The e-mail interface initially provided access to local e-mail. As the networks developed, this was expanded to provide access to BITNET and Internet based e-mail. MUSIC/SP did not have direct access to the Internet until 1990, when the University of Wisconsin WiscNet TCP/IP code was ported to the system, allowing the system to provide access to all Internet services.
A major feature of the system was its ability to run programs that were designed to run on IBM's mainstream operating system (MVS). This was accomplished using an MVS emulator that intercepted system calls at the Supervisor Call instruction (SVC) level. Most third-party applications ran in this mode. Rather than write their own version of an application, the MUSIC/SP developers would usually start from the MVS version and rebuild it to run in MVS emulation mode. Since the MVS emulation was a small subset of the real thing, the applications generally ran more efficiently on MUSIC/SP.
One major advantage the system had in educational environments was that through the use of special lines called "control cards" at the top of a file, source files for any supported language could be automatically directed to the appropriate compiler (Fortran being the default), compiled, linked, and executed, (with compilation, linkage, and execution options also specified in control cards) simply by entering the filename on a command line.
A wide variety of terminals were supported as of 1980, including both EBCDIC-based units using IBM-proprietary protocols, and asynchronous ASCII-based units. Since terminals were connected through various types of front-end processors (as per common IBM timesharing practice both then and now), and could therefore function without CPU attention for a considerable amount of time, MUSIC used variable-length time slices, which could, on compute-bound processing, reach a maximum of several seconds per time slice; conversely, if a user filled the output buffer or reached a conversational read, the timeslice would end immediately.
The Sim390 emulator contains a demonstration system of MUSIC/SP. It is freely available and runs on Microsoft Windows. [6] The demonstration system will also run under Hercules.
AIX is a series of proprietary Unix operating systems developed and sold by IBM for several of its computer platforms.
IBM mainframes are large computer systems produced by IBM since 1952. During the 1960s and 1970s, IBM dominated the computer market with the 7000 series and the later System/360, followed by the System/370. Current mainframe computers in IBM's line of business computers are developments of the basic design of the System/360.
Multiple Virtual Storage, more commonly called MVS, is the most commonly used operating system on the System/370, System/390 and IBM Z IBM mainframe computers. IBM developed MVS, along with OS/VS1 and SVS, as a successor to OS/360. It is unrelated to IBM's other mainframe operating system lines, e.g., VSE, VM, TPF.
A mainframe computer, informally called a mainframe or big iron, is a computer used primarily by large organizations for critical applications like bulk data processing for tasks such as censuses, industry and consumer statistics, enterprise resource planning, and large-scale transaction processing. A mainframe computer is large but not as large as a supercomputer and has more processing power than some other classes of computers, such as minicomputers, servers, workstations, and personal computers. Most large-scale computer-system architectures were established in the 1960s, but they continue to evolve. Mainframe computers are often used as servers.
Hercules is a computer emulator allowing software written for IBM mainframe computers and for plug compatible mainframes to run on other types of computer hardware, notably on low-cost personal computers. Development started in 1999 by Roger Bowler, a mainframe systems programmer.
The IBM System/370 (S/370) is a range of IBM mainframe computers announced as the successors to the System/360 family on June 30, 1970. The series mostly maintains backward compatibility with the S/360, allowing an easy migration path for customers; this, plus improved performance, were the dominant themes of the product announcement.
The Conversational Monitor System is a simple interactive single-user operating system. CMS was originally developed as part of IBM's CP/CMS operating system, which went into production use in 1967. CMS is part of IBM's VM family, which runs on IBM mainframe computers. VM was first announced in 1972, and is still in use today as z/VM.
In computing, Interactive System Productivity Facility (ISPF) is a software product for many historic IBM mainframe operating systems and currently the z/OS and z/VM operating systems that run on IBM mainframes. It includes a screen editor, the user interface of which was emulated by some microcomputer editors sold commercially starting in the late 1980s, including SPF/PC.
Time Sharing Option (TSO) is an interactive time-sharing environment for IBM mainframe operating systems, including OS/360 MVT, OS/VS2 (SVS), MVS, OS/390, and z/OS.
VM is a family of IBM virtual machine operating systems used on IBM mainframes System/370, System/390, zSeries, System z and compatible systems, including the Hercules emulator for personal computers.
CP/CMS is a discontinued time-sharing operating system of the late 1960s and early 1970s. It is known for its excellent performance and advanced features. Among its three versions, CP-40/CMS was an important 'one-off' research system that established the CP/CMS virtual machine architecture. It was followed by CP-67/CMS, a reimplementation of CP-40/CMS for the IBM System/360-67, and the primary focus of this article. Finally, CP-370/CMS was a reimplementation of CP-67/CMS for the System/370. While it was never released as such, it became the foundation of IBM's VM/370 operating system, announced in 1972.
Since the rise of the personal computer in the 1980s, IBM and other vendors have created PC-based IBM mainframe-compatible systems which are compatible with the larger IBM mainframe computers. For a period of time PC-based mainframe-compatible systems had a lower price and did not require as much electricity or floor space. However, they sacrificed performance and were not as dependable as mainframe-class hardware. These products have been popular with mainframe developers, in education and training settings, for very small companies with non-critical processing, and in certain disaster relief roles.
VPS/VM was an operating system that ran on IBM System/370 – IBM 3090 computers at Boston University in general use from 1977 to around 1990, and in limited use until at least 1993. During the 1980s, VPS/VM was the main operating system of Boston University and often ran up to 250 users at a time when rival VM/CMS computing systems could only run 120 or so users.
VP/CSS was a time-sharing operating system developed by National CSS. It began life in 1968 as a copy of IBM's CP/CMS, which at the time was distributed to IBM customers at no charge, in source code form, without support, as part of the IBM Type-III Library. Through extensive in-house development, in what today would be termed a software fork, National CSS took VP/CSS in a different direction from CP/CMS. Although the two systems would eventually share many capabilities, their technical implementations diverged in substantive ways.
The following is a timeline of virtualization development. In computing, virtualization is the use of a computer to simulate another computer. Through virtualization, a host simulates a guest by exposing virtual hardware devices, which may be done through software or by allowing access to a physical device connected to the machine.
Operating System/Virtual Storage 1, or OS/VS1, is a discontinued IBM mainframe computer operating system designed to be run on IBM System/370 hardware. It was the successor to the Multiprogramming with a Fixed number of Tasks (MFT) option of System/360's operating system OS/360. OS/VS1, in comparison to its predecessor, supported virtual memory. OS/VS1 was generally available during the 1970s and 1980s, and it is no longer supported by IBM.
A Supervisor Call instruction (SVC) is a hardware instruction used by the System/360 family of IBM mainframe computers up to contemporary zSeries, the Amdahl 470V/5, 470V/6, 470V/7, 470V/8, 580, 5880, 5990M, and 5990A, and others; Univac 90/60, 90/70 and 90/80, and possibly others; the Fujitsu M180 (UP) and M200 (MP), and others; and is also used in the Hercules open source mainframe emulation software. It causes an interrupt to request a service from the operating system. The system routine providing the service is called an SVC routine. SVC is a system call.
The history of IBM mainframe operating systems is significant within the history of mainframe operating systems, because of IBM's long-standing position as the world's largest hardware supplier of mainframe computers. IBM mainframes run operating systems supplied by IBM and by third parties.
In computing, a system virtual machine is a virtual machine (VM) that provides a complete system platform and supports the execution of a complete operating system (OS). These usually emulate an existing architecture, and are built with the purpose of either providing a platform to run programs where the real hardware is not available for use, or of having multiple instances of virtual machines leading to more efficient use of computing resources, both in terms of energy consumption and cost effectiveness, or both. A VM was originally defined by Popek and Goldberg as "an efficient, isolated duplicate of a real machine".
significant enhancements ,, from 2.1, announced May 2, 1989.