Mammary analogue secretory carcinoma

Last updated

Mammary analogue secretory carcinoma (MASC), also termed MASCSG, (the "SG" subscript indicates salivary gland) is a salivary gland neoplasm. It is a secretory carcinoma which shares the microscopic pathologic features with other types of secretory carcinomas including mammary secretory carcinoma, secretory carcinoma of the skin, and salivary gland–type carcinoma of the thyroid. [1] MASCSG was first described by Skálová et al. in 2010. [2] The authors of this report found a chromosome translocation in certain salivary gland tumors, i.e. a (12;15)(p13;q25) fusion gene mutation. The other secretory carcinoma types carry this fusion gene. [3] [4] [5]

Contents

Fusion gene

The translocation found in MASCSG occurs between the ETV6 gene located on the short arm (designated p) of chromosome 12 at position p13.2 (i.e. 12p13.2) and the NTRK3 gene located on the long arm (designated q) of chromosome 15 at position q25.3 (i.e. 15q25.3) to create the (12;15)(p13;q25) fusion gene, ETV6-NTRK3. This mutant fusion gene also occurs in congenital fibrosarcoma, congenital mesoblastic nephroma, secretory breast cancer (also termed juvenile breast cancer), acute myelogenous leukemia, ALK-negative Inflammatory myofibroblastic tumour, and radiation-induced papillary thyroid carcinoma. [6] [7] [8] [9] [10] The MASCSG gene codes for the transcription factor protein, ETV6, which suppresses the expression of, and thereby regulates, various genes that in mice are required for normal hematopoiesis as well as the development and maintenance of the vascular network. [11]

The NTRK3 gene codes for Tropomyosin receptor kinase C (also termed TrkC or TEL), the receptor for neurotrophin-3. TrkC is a RTK class VII tyrosine kinase receptor. When bound to neurotrophin-3, it becomes active as a tyrosine kinase to phosphorylate cellular proteins and thereby stimulate cell signaling pathways that lead to cellular differentiation and growth while inhibiting cellular death. TrkC makes particularly important contributions to development of the central and peripheral nervous systems. NTRK3 forms chromosomal translation-mediated fusions with many other genes in addition to ETV6 to form fused genes that are associated with the induction of a wide range of cancers including those of the lung, thyroid gland, colon, rectum, and brain. [9]

ETV6-NTRK3 fusion genes in some MASCSG disease cases display atypical exon junctions and may be associated with more tissue infiltrating disease and less favorable clinical outcomes. [10]

Fusion protein

The ETV6-NTRK3 fusion gene's product, ETV6-NTRK3 protein, contains the N-terminus of ETV6 that is responsible for its dimerization/polymerization ETV6, a step required for it to inhibit transcription. The protein's C-terminus contains the C-terminus of the TrkC. The fusion protein lacks transcription regulating activity but has dysregulated, i.e. continuously active tyrosine kinase activity. In consequence of the latter effect, the fusing protein continuously stimulates pro-growth and pro-survival pathways and thereby the malignant growth of its parent cells. [9] [11]

Clinical presentation and diagnosis

Mammary analogue secretory carcinoma occurs somewhat more commonly in men (male to female ratio of <1.5:1.0). Patients with this disease have a mean age of 46 years although ~12% of cases occur in pediatric patients. Individuals typically present with symptomless tumors in the parotid salivary gland (68%), buccal mucosa salivary glands (9%), submandibular salivary gland (8%) or in the small salivary glands of the lower lip (5%), upper lip (4%), and hard palate (4%). Histologically, these tumors are described as having a morphology similar to secretory breast carcinoma; they typically having one or more of the following histological patterns: microcystic, papillary-cystic, follicular, and/or solid lobular. Other histological features of these tissues include: the presence of eosinophilic secretions as detected by staining strongly for eosin Y; positive staining with periodic acid-Schiff stain (often after diastase); the presence of vesicular oval nuclei with a single small but prominent nucleolus; and the absence of basophilic Haematoxylin or zymogen granules (i.e. vesicles that store enzymes near the cell's plasma membrane). [10] [12]

The cited histology features are insufficient to distinguish MASCSG from other Salivary gland neoplasms such as acinic cell carcinoma, low-grade cribriform cystadenocarcinoma, and adenocarcinoma not otherwise specified. MASCSG can be distinguished from these and other histologically similar tumors by either tissue identification of a) the ETV6-NTRK3 fusion gene using Fluorescence in situ hybridization or reverse transcription polymerase chain reaction gene detection methods [13] or b) a specific pattern of marker proteins as registered using specific antibody-based detection methods, i.e. MASCSG tissue should have detectable S100 (a family of calcium binding proteins), Mammaglobin (a breast cancer marker), Keratin 7 (an intermediate filament found in epithelial cells), GATA3 (a transcription factor and breast cancer biomarker), SOX10 (a transcription factor important in neural crest origin cells and development of the peripheral nervous system), and STAT5A (a transcription factor) but lack antibody-detectable TP63 (a transcription factor in the same family as p53) and Anoctamin-1 (a voltage sensitive calcium activated chloride channel). [14] [15]

Clinical course and treatment

MASCSG is currently treated as a low-grade (i.e. Grade 1) carcinoma with an overall favorable prognosis. These cases are treated by complete surgical excision. However, the tumor does have the potential to recur locally and/or spread beyond surgically dissectible margins as well as metastasize to regional lymph nodes and distant tissues, particularly in tumors with histological features indicating a high cell growth rate potential. [10] [12] One study found lymph node metastasis in 5 of 34 MASCSG patients at initial surgery for the disease; these cases, when evidencing no further spread of disease, may be treated with radiation therapy. [16] The treatment of cases with disease spreading beyond regional lymph nodes has been variable, ranging from simple excision to radical resections accompanied by adjuvant radiotherapy and/or chemotherapy, depending on the location of disease. [10] [17] Mean disease-free survival for MASCSG patients has been reported to be 92 months in one study. [16]

The tyrosine kinase activity of NTRK3 as well as the ETV6-NTRK3 protein is inhibited by certain tyrosine kinase inhibitory drugs such as Entrectinib and LOXO-101; this offers a potential medical intervention method using these drugs to treat aggressive MASCSG disease. [9] Indeed, one patient with extensive head and neck MASCSG disease obtained an 89% fall in tumor size when treated with entrectinib. This suppression lasted only 7 months due to the tumor's acquirement of a mutation in the ETV6-NTRK3 gene. The newly mutated gene encoded an entrectinib-reisistant ETV6-NTRK3 protein. Treatment of aggressive forms of MASCSG with NTRK3-inhibiting tyrosine kinase inhibiting drugs, perhaps with switching to another type of tyrosine kinase inhibitor drug if the tumor acquires resistance to the initial drug, is under study. [9] STARTRK-2

Related Research Articles

<span class="mw-page-title-main">Adenoid cystic carcinoma</span> Medical condition

Adenoid cystic carcinoma is a rare type of cancer that can exist in many different body sites. This tumor most often occurs in the salivary glands, but it can also be found in many anatomic sites, including the breast, lacrimal gland, lung, brain, bartholin gland, trachea, and the paranasal sinuses.

<span class="mw-page-title-main">Mucoepidermoid carcinoma</span> Medical condition

Mucoepidermoid carcinoma (MEC) is the most common type of minor salivary gland malignancy in adults. Mucoepidermoid carcinoma can also be found in other organs, such as bronchi, lacrimal sac, and thyroid gland.

<span class="mw-page-title-main">Tropomyosin receptor kinase A</span> Protein-coding gene in the species Homo sapiens

Tropomyosin receptor kinase A (TrkA), also known as high affinity nerve growth factor receptor, neurotrophic tyrosine kinase receptor type 1, or TRK1-transforming tyrosine kinase protein is a protein that in humans is encoded by the NTRK1 gene.

<span class="mw-page-title-main">Tropomyosin receptor kinase B</span> Protein and coding gene in humans

Tropomyosin receptor kinase B (TrkB), also known as tyrosine receptor kinase B, or BDNF/NT-3 growth factors receptor or neurotrophic tyrosine kinase, receptor, type 2 is a protein that in humans is encoded by the NTRK2 gene. TrkB is a receptor for brain-derived neurotrophic factor (BDNF). Standard pronunciation is "track bee".

<span class="mw-page-title-main">Tropomyosin receptor kinase C</span> Protein-coding gene in the species Homo sapiens

Tropomyosin receptor kinase C (TrkC), also known as NT-3 growth factor receptor, neurotrophic tyrosine kinase receptor type 3, or TrkC tyrosine kinase is a protein that in humans is encoded by the NTRK3 gene.

<span class="mw-page-title-main">Myoepithelial cell</span>

Myoepithelial cells are cells usually found in glandular epithelium as a thin layer above the basement membrane but generally beneath the luminal cells. These may be positive for alpha smooth muscle actin and can contract and expel the secretions of exocrine glands. They are found in the sweat glands, mammary glands, lacrimal glands, and salivary glands. Myoepithelial cells in these cases constitute the basal cell layer of an epithelium that harbors the epithelial progenitor. In the case of wound healing, myoepithelial cells reactively proliferate. Presence of myoepithelial cells in a hyperplastic tissue proves the benignity of the gland and, when absent, indicates cancer. Only rare cancers like adenoid cystic carcinomas contains myoepithelial cells as one of the malignant components.

<span class="mw-page-title-main">Acinic cell carcinoma</span> Medical condition

Acinic cell carcinoma is a malignant tumor representing 2% of all salivary tumors. 90% of the time found in the parotid gland, 10% intraorally on buccal mucosa or palate. The disease presents as a slow growing mass, associated with pain or tenderness in 50% of the cases. Often appears pseudoencapsulated.

<span class="mw-page-title-main">ETV6</span> Protein-coding gene in the species Homo sapiens

ETV6 protein is a transcription factor that in humans is encoded by the ETV6 gene. The ETV6 protein regulates the development and growth of diverse cell types, particularly those of hematological tissues. However, its gene, ETV6 frequently suffers various mutations that lead to an array of potentially lethal cancers, i.e., ETV6 is a clinically significant proto-oncogene in that it can fuse with other genes to drive the development and/or progression of certain cancers. However, ETV6 is also an anti-oncogene or tumor suppressor gene in that mutations in it that encode for a truncated and therefore inactive protein are also associated with certain types of cancers.

<span class="mw-page-title-main">STAT5A</span> Protein-coding gene in the species Homo sapiens

Signal transducer and activator of transcription 5A is a protein that in humans is encoded by the STAT5A gene. STAT5A orthologs have been identified in several placentals for which complete genome data are available.

Trk receptors are a family of tyrosine kinases that regulates synaptic strength and plasticity in the mammalian nervous system. Trk receptors affect neuronal survival and differentiation through several signaling cascades. However, the activation of these receptors also has significant effects on functional properties of neurons.

<span class="mw-page-title-main">Mesoblastic nephroma</span> Medical condition

Congenital mesoblastic nephroma, while rare, is the most common kidney neoplasm diagnosed in the first three months of life and accounts for 3-5% of all childhood renal neoplasms. This neoplasm is generally non-aggressive and amenable to surgical removal. However, a readily identifiable subset of these kidney tumors has a more malignant potential and is capable of causing life-threatening metastases. Congenital mesoblastic nephroma was first named as such in 1967 but was recognized decades before this as fetal renal hamartoma or leiomyomatous renal hamartoma.

<span class="mw-page-title-main">Anaplastic lymphoma kinase</span> Protein-coding gene in the species Homo sapiens

Anaplastic lymphoma kinase (ALK) also known as ALK tyrosine kinase receptor or CD246 is an enzyme that in humans is encoded by the ALK gene.

<span class="mw-page-title-main">DDR1</span> Protein-coding gene in the species Homo sapiens

Discoidin domain receptor family, member 1, also known as DDR1 or CD167a, is a human gene.

<span class="mw-page-title-main">ROS1</span> Protein-coding gene in the species Homo sapiens

Proto-oncogene tyrosine-protein kinase ROS is an enzyme that in humans is encoded by the ROS1 gene.

ETV6-NTRK3 gene fusion is the translocation of genetic material between the ETV6 gene located on the short arm of chromosome 12 at position p13.2 and the NTRK3 gene located on the long arm of chromosome 15 at position q25.3 to create the (12;15)(p13;q25) fusion gene, ETV6-NTRK3. This new gene consists of the 5' end of ETV6 fused to the 3' end of NTRK3. ETV6-NTRK3 therefore codes for a chimeric oncoprotein consisting of the helix-loop-helix (HLH) protein dimerization domain of the ETV6 protein fused to the tyrosine kinase domain of the NTRK3 protein. The ETV6 gene codes for the transcription factor protein, ETV6, which suppresses the expression of, and thereby regulates, various genes that in mice are required for normal hematopoiesis as well as the development and maintenance of the vascular network. NTRK3 codes for Tropomyosin receptor kinase C a NT-3 growth factor receptor cell surface protein that when bound to its growth factor ligand, neurotrophin-3, becomes an active tyrosine kinase that phosphorylates tyrosine residues on, and thereby stimulates, signaling proteins that promote the growth, survival, and proliferation of their parent cells. The tyrosine kinase of the ETV6-NTRK3 fusion protein is dysfunctional in that it is continuously active in phosphorylating tyrosine residues on, and thereby continuously stimulating, proteins that promote the growth, survival, and proliferation of their parent cells. In consequence, these cells take on malignant characteristics and are on the pathway of becoming cancerous. Indeed, the ETV6-NTRK3 fusion gene appears to be a critical driver of several types of cancers. It was originally identified in congenital fibrosarcoma and subsequently found in mammary secretory carcinoma, mammary analogue secretory carcinoma of salivary glands, salivary gland–type carcinoma of the thyroid, secretory carcinoma of the skin, congenital fibrosarcoma, congenital mesoblastic nephroma, rare cases of acute myelogenous leukemia, ALK-negative Inflammatory myofibroblastic tumour, cholangiocarcinoma, and radiation-induced papillary thyroid carcinoma.

<span class="mw-page-title-main">Entrectinib</span> TKI inhibitor used for cancer treatment

Entrectinib, sold under the brand name Rozlytrek, is an anti-cancer medication used to treat ROS1-positive non-small cell lung cancer and NTRK fusion-positive solid tumors. It is a selective tyrosine kinase inhibitor (TKI), of the tropomyosin receptor kinases (TRK) A, B and C, C-ros oncogene 1 (ROS1) and anaplastic lymphoma kinase (ALK).

Clonal hypereosinophilia, also termed primary hypereosinophilia or clonal eosinophilia, is a grouping of hematological disorders all of which are characterized by the development and growth of a pre-malignant or malignant population of eosinophils, a type of white blood cell that occupies the bone marrow, blood, and other tissues. This population consists of a clone of eosinophils, i.e. a group of genetically identical eosinophils derived from a sufficiently mutated ancestor cell.

Lipofibromatosis-like neural tumor (LPF-NT) is an extremely rare soft tissue tumor first described by Agaram et al in 2016. As of mid-2021, at least 39 cases of LPF-NT have been reported in the literature. LPF-NT tumors have several features that resemble lipofibromatosis (LPF) tumors, malignant peripheral nerve sheath tumors, spindle cell sarcomas, low-grade neural tumors, peripheral nerve sheath tumors, and other less clearly defined tumors; Prior to the Agaram at al report, LPF-NTs were likely diagnosed as variants or atypical forms of these tumors. The analyses of Agaram at al and subsequent studies uncovered critical differences between LPF-NT and the other tumor forms which suggest that it is a distinct tumor entity differing not only from lipofibromatosis but also the other tumor forms.

Mammary secretory carcinoma (MSC), also termed secretory carcinoma of the breast, is a rare form of the breast cancers. MSC usually affects women but in a significant percentage of cases also occurs in men and children. Indeed, McDvitt and Stewart first described MSC in 1966 and termed it juvenile breast carcinoma because an increased number of cases were at that time diagnosed in juvenile females. MSC is the most common form of breast cancer in children, representing 80% of childhood breast cancers, although it accounts for less than 0.15% of all breast cancers.

Secretory carcinoma was once used exclusively as a term for rare, slowly growing breast tumors without reference to their location in the breast. It is now termed mammary secretory carcinoma because secretory carcinoma has sometimes been used to name tumors which develop in non-breast tissues but have the microscopic appearance of, and a critical gene abnormality found in, mammary secretory carcinoma. This genetic abnormality is a balanced genetic translocation that forms a ETV6-NTRK3 fusion gene which appears involved in promoting the development and/or progression of all these tumors. The formerly termed secretory carcinomas include:

References

  1. Chambers M, Nosé V, Sadow PM, Tafe LJ, Kerr DA (March 2021). "Salivary-Like Tumors of the Thyroid: A Comprehensive Review of Three Rare Carcinomas". Head and Neck Pathology. 15 (1): 212–224. doi:10.1007/s12105-020-01193-5. PMC   8010008 . PMID   32562215.
  2. Skálová A, Vanecek T, Sima R, Laco J, Weinreb I, Perez-Ordonez B, Starek I, Geierova M, Simpson RH, Passador-Santos F, Ryska A, Leivo I, Kinkor Z, Michal M (2010). "Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity". The American Journal of Surgical Pathology. 34 (5): 599–608. doi:10.1097/PAS.0b013e3181d9efcc. PMID   20410810. S2CID   19924608.
  3. Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, LiVolsi VA, Papotti MG, Sobrinho-Simões M, Tallini G, Mete O (March 2022). "Overview of the 2022 WHO Classification of Thyroid Neoplasms". Endocrine Pathology. 33 (1): 27–63. doi:10.1007/s12022-022-09707-3. PMID   35288841. S2CID   247440666.
  4. Amin SM, Beattie A, Ling X, Jennings LJ, Guitart J (November 2016). "Primary Cutaneous Mammary Analog Secretory Carcinoma With ETV6-NTRK3 Translocation". The American Journal of Dermatopathology. 38 (11): 842–845. doi:10.1097/DAD.0000000000000590. PMID   27763904. S2CID   46372654.
  5. Taniguchi K, Yanai H, Kaji T, Kubo T, Ennishi D, Hirasawa A, Yoshino T (August 2021). "Secretory carcinoma of the skin with lymph node metastases and recurrence in both lungs: A case report". Journal of Cutaneous Pathology. 48 (8): 1069–1074. doi:10.1111/cup.14028. PMID   33882152. S2CID   233352244.
  6. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, Becker L, Carneiro F, MacPherson N, Horsman D, Poremba C, Sorensen PH (Nov 2002). "Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma". Cancer Cell. 2 (5): 367–76. doi: 10.1016/S1535-6108(02)00180-0 . PMID   12450792.
  7. Majewska H, Skálová A, Stodulski D, Klimková A, Steiner P, Stankiewicz C, Biernat W. "Mammary analogue secretory carcinoma of salivary glands: a new entity associated with ETV6 gene rearrangement." Virchows Arch. 2015 Mar;466(3):245-54. doi: 10.1007/s00428-014-1701-8. Epub 2014 Dec 12.
  8. Argani, P.; Fritsch, M.; Kadkol, S. S.; Schuster, A.; Beckwith, J. B.; Perlman, E. J. (2000-01-01). "Detection of the ETV6-NTRK3 chimeric RNA of infantile fibrosarcoma/cellular congenital mesoblastic nephroma in paraffin-embedded tissue: application to challenging pediatric renal stromal tumors". Modern Pathology. 13 (1): 29–36. doi: 10.1038/modpathol.3880006 . ISSN   0893-3952. PMID   10658907.
  9. 1 2 3 4 5 Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS (2017). "Targeting TRK family proteins in cancer". Pharmacology & Therapeutics. 173: 58–66. doi:10.1016/j.pharmthera.2017.02.006. PMID   28174090. S2CID   4243668.
  10. 1 2 3 4 5 Skalova A, Michal M, Simpson RH (2017). "Newly described salivary gland tumors". Modern Pathology. 30 (s1): S27–S43. doi: 10.1038/modpathol.2016.167 . PMID   28060365.
  11. 1 2 De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Basinko A, De Braekeleer M (2012). "ETV6 fusion genes in hematological malignancies: a review". Leukemia Research. 36 (8): 945–61. doi:10.1016/j.leukres.2012.04.010. PMID   22578774.
  12. 1 2 Khalele BA (2017). "Systematic review of mammary analog secretory carcinoma of salivary glands at 7 years after description". Head & Neck. 39 (6): 1243–1248. doi:10.1002/hed.24755. PMID   28370824. S2CID   3073024.
  13. Connor A, Perez-Ordoñez B, Shago M, Skálová A, Weinreb I (2012). "Mammary analog secretory carcinoma of salivary gland origin with the ETV6 gene rearrangement by FISH: expanded morphologic and immunohistochemical spectrum of a recently described entity". The American Journal of Surgical Pathology. 36 (1): 27–34. doi:10.1097/PAS.0b013e318231542a. PMID   21989350. S2CID   27735840.
  14. Murphy DA, Ely HA, Shoemaker R, Boomer A, Culver BP, Hoskins I, Haimes JD, Walters RD, Fernandez D, Stahl JA, Lee J, Kim KM, Lamoureux J, Christiansen J (2016). "Detecting Gene Rearrangements in Patient Populations Through a 2-Step Diagnostic Test Comprised of Rapid IHC Enrichment Followed by Sensitive Next-Generation Sequencing". Applied Immunohistochemistry & Molecular Morphology. 25 (7): 513–523. doi:10.1097/PAI.0000000000000360. PMC   5553231 . PMID   27028240.
  15. Skálová A, Vanecek T, Simpson RH, Laco J, Majewska H, Baneckova M, Steiner P, Michal M (2016). "Mammary Analogue Secretory Carcinoma of Salivary Glands: Molecular Analysis of 25 ETV6 Gene Rearranged Tumors With Lack of Detection of Classical ETV6-NTRK3 Fusion Transcript by Standard RT-PCR: Report of 4 Cases Harboring ETV6-X Gene Fusion". The American Journal of Surgical Pathology. 40 (1): 3–13. doi:10.1097/PAS.0000000000000537. PMID   26492182. S2CID   20366791.
  16. 1 2 Stevens TM, Parekh V (2016). "Mammary Analogue Secretory Carcinoma". Archives of Pathology & Laboratory Medicine. 140 (9): 997–1001. doi: 10.5858/arpa.2015-0075-RS . PMID   27575269.
  17. Drilon A, Li G, Dogan S, Gounder M, Shen R, Arcila M, Wang L, Hyman DM, Hechtman J, Wei G, Cam NR, Christiansen J, Luo D, Maneval EC, Bauer T, Patel M, Liu SV, Ou SH, Farago A, Shaw A, Shoemaker RF, Lim J, Hornby Z, Multani P, Ladanyi M, Berger M, Katabi N, Ghossein R, Ho AL (2016). "What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC)". Annals of Oncology. 27 (5): 920–6. doi:10.1093/annonc/mdw042. PMC   4843186 . PMID   26884591.