Mark Bretscher

Last updated

Mark S. Bretscher
Born(1940-01-08)8 January 1940

Mark Steven Bretscher (born 8 January 1940) is a British biological scientist and Fellow of the Royal Society. He worked at the Medical Research Council Laboratory of Molecular Biology in Cambridge, United Kingdom and is currently retired.

Contents

Education

Mark Bretscher was born in Cambridge and educated at Abingdon School from 1950 to 1958. [1] He then went to Gonville and Caius College, University of Cambridge in 1958 to study Chemistry where he gained a PhD and became a Research Fellow. [2]

Career

In 1961 he joined the MRC Unit for the Study of the Molecular Structure of Biological Systems in the Cavendish laboratory as a graduate student with Francis Crick and Sydney Brenner and then spent a year as a Jane Coffin Childs Fellow with Paul Berg at Stanford (1964-5). He joined the staff of the MRC Laboratory of Molecular Biology in Cambridge, becoming Head of the Division of Cell Biology (1986-1995) and Emeritus scientist (2005-2013). [2] He was a visiting professor in biochemistry and molecular biology at Harvard University (1974–75) and Eleanor Roosevelt Cancer Society Fellow and visiting professor, Stanford University (1984–85). He was elected a Fellow of the Royal Society in 1985.

Bretscher's main contributions lie in the areas of the mechanism of protein biosynthesis, the structure of cell membranes (especially that of the human red blood cell) and animal cell migration.

Protein Synthesis

In his first paper, on the genetic code, the word "codon" first appeared in print (inserted by Francis Crick). [3] Bretscher later showed that the growing polypeptide chain is attached to one of the hydroxyl groups of the terminal adenosine residue of tRNA. [4] With Kjeld Marcker he found that the initiator methionine tRNA binds directly to the peptide (P) site on the ribosome [5] and that protein synthesis can start on a circular messenger, showing that during initiation a ribosome does not need an end: the correct initiator AUG is not found by starting at one end of the mRNA and then selecting the first AUG. [6] He proposed that, during translocation, the two ribosomal subunits move with respect to each other, resulting in a hybrid site P/A site; this suggested that the movement of the peptidyl-tRNA and bound mRNA from the A site to the P site occurs in two steps. [7]

Cell membranes

Using a novel labelling agent, he showed that human erythrocytes have just two major proteins exposed on their outer surfaces (now known as the anion channel and glycophorin) and that both span the lipid bilayer with a unique orientation, the first proteins shown to span the membrane. He also discovered that the amino phospholipids, phosphatidylethanolamine and phosphatidylserine, are inaccessible from outside the cell and proposed therefore that the bilayer is asymmetrical — with choline lipids forming the outer monolayer and the amino lipids the cytoplasmic monolayer. He suggested that this asymmetry arises during membrane biosynthesis, proposing that all these lipids are made on the cytoplasmic face of the bilayer, but choline lipids are subsequently moved by a hypothetical lipid translocase to the outer monolayer which he named a "flippase". [8]

With Munro, he proposed that the Golgi apparatus concentrates cholesterol away from the cis-side of the Golgi towards the trans-side. This helps keep the level of cholesterol at a high level in the plasma membrane, making it a better barrier for the cell. The presence of cholesterol makes a bilayer thicker: the increasing thickness of the membrane from cis- to trans- leads to a filtration of only those proteins having a long enough transmembrane domain to advance to the cell surface. This is a novel form of protein sorting. [9]

Cell Movement

He is the principal protagonist of the membrane flow scheme for cell locomotion, which is largely based on how cap formation occurs [10] and the movement of carbon particles on the surfaces of migrating fibroblasts studied by Michael Abercrombie. [11] Abercrombie suggested his particle movement reflected motion of the surface from the cell's front to its rear, and that the front was extended by addition of membrane there from internal stores. Most mammalian cells continuously circulate their surface membrane in a process driven by the endocytic cycle. Clathrin [12] coated pits in the plasma membrane bud a segment of the surface into the cell; this membrane is processed through various intracellular compartments and then returned to the cell surface. [13] When cells move — a process called amoeboid movement — the cell's front is extended ahead of the cell and the rear end of the cell is then brought forward. Bretscher extended Abercrombie's view that the cell's leading edge is extended by the addition of intracellular membrane to it by exocytosis and this membrane is retrieved, by endocytosis, from regions of the cell surface nearer the cell's rear. This circulating membrane is restricted to a few proteins (mainly receptors which bring nutrients, such as LDL or transferrin) into the cell and lipids. In this way, a polarised endocytic cycle is set up, one leg of it being in the cell's surface, the other its transit through the cell: this spatial separation in the cell's surface between the sites of exocytosis (the front) and the sites of endocytosis (further back) causes a flow of membrane from the cell's front towards its rear. For many purposes, this flow can be thought of as a "lipid flow": it causes large aggregates on the cell surface, such as attached carbon particles, cross-linked surface proteins or cross-linked lipids [14] to be swept towards the back of the cell. [15] However, surface proteins which have not been cross-linked would also tend to be swept backwards, but their distribution on the cell surface is approximately randomized by Brownian motion. [16] He showed that addition of recycling membrane on moving cells occurs at the cell's leading edge. [17] He suggested that the role of the cytoskeleton in this process is to transport intracellular membrane to the front of the cell and to help structure the newly exocytosed membrane at the cell's front. In this view, the cell is somewhat like a tank, the surface attached to the substrate acting as a tread to move the cell forward. The feet of the cell (usually integrins) also circulate to provide fresh attachments for the cell's front. [18]

The rate of membrane circulation about matches that needed to move the cell forwards; studies with Dictyostelium discoideum amoebae show that, in this fast moving (about 15μm/min) cell, they internalise their entire surface once about each 6 mins. [19] Furthermore, ts mutants in NSF, a protein required for membrane fusion, stop moving at the restrictive temperature. [20] Strikingly, both Dictyostelium amoebae and neutrophils can chemotax towards a target whilst in suspension, showing that a solid substrate is not required for movement; this provides strong evidence that these cells move by a flowing membrane. [21] [22]

Family

His father was Egon Bretscher, the nuclear physicist. [23] He is married to Barbara Pearse and his brothers are Anthony Bretscher and Peter Bretscher. He lists his hobbies as "walking, creating wild environments, early English portraits and furniture."

Related Research Articles

<span class="mw-page-title-main">Biological membrane</span> Enclosing or separating membrane in organisms acting as selective semi-permeable barrier

A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of the cell and another. Biological membranes, in the form of eukaryotic cell membranes, consist of a phospholipid bilayer with embedded, integral and peripheral proteins used in communication and transportation of chemicals and ions. The bulk of lipids in a cell membrane provides a fluid matrix for proteins to rotate and laterally diffuse for physiological functioning. Proteins are adapted to high membrane fluidity environment of the lipid bilayer with the presence of an annular lipid shell, consisting of lipid molecules bound tightly to the surface of integral membrane proteins. The cell membranes are different from the isolating tissues formed by layers of cells, such as mucous membranes, basement membranes, and serous membranes.

<span class="mw-page-title-main">Endocytosis</span> Cellular process

Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a vesicle containing the ingested material. Endocytosis includes pinocytosis and phagocytosis. It is a form of active transport.

<span class="mw-page-title-main">Vesicle (biology and chemistry)</span> Any small, fluid-filled, spherical organelle enclosed by a membrane

In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form naturally during the processes of secretion (exocytosis), uptake (endocytosis), and the transport of materials within the plasma membrane. Alternatively, they may be prepared artificially, in which case they are called liposomes. If there is only one phospholipid bilayer, the vesicles are called unilamellar liposomes; otherwise they are called multilamellar liposomes. The membrane enclosing the vesicle is also a lamellar phase, similar to that of the plasma membrane, and intracellular vesicles can fuse with the plasma membrane to release their contents outside the cell. Vesicles can also fuse with other organelles within the cell. A vesicle released from the cell is known as an extracellular vesicle.

<span class="mw-page-title-main">Lipid bilayer</span> Membrane of two layers of lipid molecules

The lipid bilayer is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cells. The cell membranes of almost all organisms and many viruses are made of a lipid bilayer, as are the nuclear membrane surrounding the cell nucleus, and membranes of the membrane-bound organelles in the cell. The lipid bilayer is the barrier that keeps ions, proteins and other molecules where they are needed and prevents them from diffusing into areas where they should not be. Lipid bilayers are ideally suited to this role, even though they are only a few nanometers in width, because they are impermeable to most water-soluble (hydrophilic) molecules. Bilayers are particularly impermeable to ions, which allows cells to regulate salt concentrations and pH by transporting ions across their membranes using proteins called ion pumps.

<span class="mw-page-title-main">Membrane protein</span> Proteins that are part of, or interact with, biological membranes

Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane and can either penetrate the membrane (transmembrane) or associate with one or the other side of a membrane. Peripheral membrane proteins are transiently associated with the cell membrane.

<span class="mw-page-title-main">Peripheral membrane protein</span> Membrane proteins that adhere temporarily to membranes with which they are associated

Peripheral membrane proteins, or extrinsic membrane proteins, are membrane proteins that adhere only temporarily to the biological membrane with which they are associated. These proteins attach to integral membrane proteins, or penetrate the peripheral regions of the lipid bilayer. The regulatory protein subunits of many ion channels and transmembrane receptors, for example, may be defined as peripheral membrane proteins. In contrast to integral membrane proteins, peripheral membrane proteins tend to collect in the water-soluble component, or fraction, of all the proteins extracted during a protein purification procedure. Proteins with GPI anchors are an exception to this rule and can have purification properties similar to those of integral membrane proteins.

In biology, caveolae, which are a special type of lipid raft, are small invaginations of the plasma membrane in the cells of many vertebrates. They are the most abundant surface feature of many vertebrate cell types, especially endothelial cells, adipocytes and embryonic notochord cells. They were originally discovered by E. Yamada in 1955.

<span class="mw-page-title-main">Steroid hormone</span> Substance with biological function

A steroid hormone is a steroid that acts as a hormone. Steroid hormones can be grouped into two classes: corticosteroids and sex steroids. Within those two classes are five types according to the receptors to which they bind: glucocorticoids and mineralocorticoids and androgens, estrogens, and progestogens. Vitamin D derivatives are a sixth closely related hormone system with homologous receptors. They have some of the characteristics of true steroids as receptor ligands.

<span class="mw-page-title-main">Lipid raft</span>

The plasma membranes of cells contain combinations of glycosphingolipids, cholesterol and protein receptors organised in glycolipoprotein lipid microdomains termed lipid rafts. Their existence in cellular membranes remains somewhat controversial. It has been proposed that they are specialized membrane microdomains which compartmentalize cellular processes by serving as organising centers for the assembly of signaling molecules, allowing a closer interaction of protein receptors and their effectors to promote kinetically favorable interactions necessary for the signal transduction. Lipid rafts influence membrane fluidity and membrane protein trafficking, thereby regulating neurotransmission and receptor trafficking. Lipid rafts are more ordered and tightly packed than the surrounding bilayer, but float freely within the membrane bilayer. Although more common in the cell membrane, lipid rafts have also been reported in other parts of the cell, such as the Golgi apparatus and lysosomes.

<span class="mw-page-title-main">LDL receptor</span> Mammalian protein found in Homo sapiens

The low-density lipoprotein receptor (LDL-R) is a mosaic protein of 839 amino acids that mediates the endocytosis of cholesterol-rich low-density lipoprotein (LDL). It is a cell-surface receptor that recognizes apolipoprotein B100 (ApoB100), which is embedded in the outer phospholipid layer of very low-density lipoprotein (VLDL), their remnants—i.e. intermediate-density lipoprotein (IDL), and LDL particles. The receptor also recognizes apolipoprotein E (ApoE) which is found in chylomicron remnants and IDL. In humans, the LDL receptor protein is encoded by the LDLR gene on chromosome 19. It belongs to the low density lipoprotein receptor gene family. It is most significantly expressed in bronchial epithelial cells and adrenal gland and cortex tissue.

Cell migration is a central process in the development and maintenance of multicellular organisms. Tissue formation during embryonic development, wound healing and immune responses all require the orchestrated movement of cells in particular directions to specific locations. Cells often migrate in response to specific external signals, including chemical signals and mechanical signals. Errors during this process have serious consequences, including intellectual disability, vascular disease, tumor formation and metastasis. An understanding of the mechanism by which cells migrate may lead to the development of novel therapeutic strategies for controlling, for example, invasive tumour cells.

<span class="mw-page-title-main">MRC Laboratory of Molecular Biology</span> Research institute in Cambridge, England

The Medical Research Council (MRC) Laboratory of Molecular Biology (LMB) is a research institute in Cambridge, England, involved in the revolution in molecular biology which occurred in the 1950–60s. Since then it has remained a major medical research laboratory at the forefront of scientific discovery, dedicated to improving the understanding of key biological processes at atomic, molecular and cellular levels using multidisciplinary methods, with a focus on using this knowledge to address key issues in human health.

<span class="mw-page-title-main">Cationic liposome</span>

Cationic liposomes are spherical structures that contain positively charged lipids. Cationic liposomes can vary in size between 40 nm and 500 nm, and they can either have one lipid bilayer (monolamellar) or multiple lipid bilayers (multilamellar). The positive charge of the phospholipids allows cationic liposomes to form complexes with negatively charged nucleic acids through ionic interactions. Upon interacting with nucleic acids, cationic liposomes form clusters of aggregated vesicles. These interactions allow cationic liposomes to condense and encapsulate various therapeutic and diagnostic agents in their aqueous compartment or in their lipid bilayer. These cationic liposome-nucleic acid complexes are also referred to as lipoplexes. Due to the overall positive charge of cationic liposomes, they interact with negatively charged cell membranes more readily than classic liposomes. This positive charge can also create some issues in vivo, such as binding to plasma proteins in the bloodstream, which leads to opsonization. These issues can be reduced by optimizing the physical and chemical properties of cationic liposomes through their lipid composition. Cationic liposomes are increasingly being researched for use as delivery vectors in gene therapy due to their capability to efficiently transfect cells. A common application for cationic liposomes is cancer drug delivery.

When molecules on the surface of a motile eukaryotic cell are crosslinked, they are moved to one end of the cell to form a "cap". This phenomenon, the process of which is called cap formation, was discovered in 1971 on lymphocytes and is a property of amoebae and all locomotory animal cells except sperm. The crosslinking is most easily achieved using a polyvalent antibody to a surface antigen on the cell. Cap formation can be visualised by attaching a fluorophore, such as fluorescein, to the antibody.

<span class="mw-page-title-main">Flippase</span>

Flippases are transmembrane lipid transporter proteins located in the membrane which belong to ABC transporter or P4-type ATPase families. They are responsible for aiding the movement of phospholipid molecules between the two leaflets that compose a cell's membrane. The possibility of active maintenance of an asymmetric distribution of molecules in the phospholipid bilayer was predicted in the early 1970s by Mark Bretscher. Although phospholipids diffuse rapidly in the plane of the membrane, their polar head groups cannot pass easily through the hydrophobic center of the bilayer, limiting their diffusion in this dimension. Some flippases - often instead called scramblases - are energy-independent and bidirectional, causing reversible equilibration of phospholipid between the two sides of the membrane, whereas others are energy-dependent and unidirectional, using energy from ATP hydrolysis to pump the phospholipid in a preferred direction. Flippases are described as transporters that move lipids from the exoplasmic to the cytosolic face, while floppases transport in the reverse direction.

The epididymal secretory protein E1, also known as NPC2( Niemann-Pick intracellular cholesterol transporter 2), is one of two main lysosomal transport proteins that assist in the regulation of cellular cholesterol by exportation of LDL-derived cholesterol from lysosomes. Lysosomes have digestive enzymes that allow it to break down LDL particles to LDL-derived cholesterol once the LDL particle is engulfed into the cell via receptor mediated endocytosis.

A protocell is a self-organized, endogenously ordered, spherical collection of lipids proposed as a stepping stone toward the origin of life. A central question in evolution is how simple protocells first arose and how they could differ in reproductive output, thus enabling the accumulation of novel biological emergences over time, i.e. biological evolution. Although a functional protocell has not yet been achieved in a laboratory setting, the goal to understand the process appears well within reach.

A model lipid bilayer is any bilayer assembled in vitro, as opposed to the bilayer of natural cell membranes or covering various sub-cellular structures like the nucleus. They are used to study the fundamental properties of biological membranes in a simplified and well-controlled environment, and increasingly in bottom-up synthetic biology for the construction of artificial cells. A model bilayer can be made with either synthetic or natural lipids. The simplest model systems contain only a single pure synthetic lipid. More physiologically relevant model bilayers can be made with mixtures of several synthetic or natural lipids.

Membrane curvature is the geometrical measure or characterization of the curvature of membranes. The membranes can be naturally occurring or man-made (synthetic). An example of naturally occurring membrane is the lipid bilayer of cells, also known as cellular membranes. Synthetic membranes can be obtained by preparing aqueous solutions of certain lipids. The lipids will then "aggregate" and form various phases and structures. According to the conditions and the chemical structures of the lipid, different phases will be observed. For instance, the lipid POPC tends to form lamellar vesicles in solution, whereas smaller lipids, such as detergents, will form micelles if the CMC was reached. There are five commonly proposed mechanisms by which membrane curvature is created, maintained, or controlled: lipid composition, shaped transmembrane proteins, protein motif insertion/BAR domains, protein scaffolding, and cytoskeleton scaffolding.

<span class="mw-page-title-main">Cell membrane</span> Biological membrane that separates the interior of a cell from its outside environment

The cell membrane is a biological membrane that separates and protects the interior of a cell from the outside environment. The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols interspersed between them, maintaining appropriate membrane fluidity at various temperatures. The membrane also contains membrane proteins, including integral proteins that span the membrane and serve as membrane transporters, and peripheral proteins that loosely attach to the outer (peripheral) side of the cell membrane, acting as enzymes to facilitate interaction with the cell's environment. Glycolipids embedded in the outer lipid layer serve a similar purpose. The cell membrane controls the movement of substances in and out of a cell, being selectively permeable to ions and organic molecules. In addition, cell membranes are involved in a variety of cellular processes such as cell adhesion, ion conductivity, and cell signalling and serve as the attachment surface for several extracellular structures, including the cell wall and the carbohydrate layer called the glycocalyx, as well as the intracellular network of protein fibers called the cytoskeleton. In the field of synthetic biology, cell membranes can be artificially reassembled.

References

  1. "Valete et Salvete" (PDF). The Abingdonian.
  2. 1 2 "Mark S. Bretscher". MRC Laboratory of Molecular Biology.{{cite web}}: CS1 maint: url-status (link)
  3. Bretscher, MS; Grunberg-Manago, M (1962). "Polyribonucleotide-directed protein synthesis using an E. coli cell-free system". Nature. 195 (4838): 283–284. Bibcode:1962Natur.195..283B. doi:10.1038/195283a0. PMID   13872932. S2CID   4292916.
  4. Bretscher, MS (1963). "The Chemical Nature of the s-RNA-polypeptide Complex". J Mol Biol. 7 (4): 446–449. doi:10.1016/s0022-2836(63)80037-6. PMID   14066620.
  5. Bretscher, MS; Marcker, KA (1966). "Polypeptidyl-s-ribonucleic acid and amino-acyl-s-ribonucleic acid binding sites on ribosomes". Nature. 211 (5047): 380–384. doi:10.1038/211380a0. PMID   5338626. S2CID   4208941.
  6. Bretscher, MS (1968). "Direct translation of a circular messenger DNA". Nature. 220 (5172): 1088–1091. Bibcode:1968Natur.220.1088B. doi:10.1038/2201088a0. PMID   5723604. S2CID   4240408.
  7. Bretscher, MS (1968). "Translocation in protein synthesis: a hybrid structure model". Nature. 218 (5142): 675–677. Bibcode:1968Natur.218..675B. doi:10.1038/218675a0. PMID   5655957. S2CID   4191051.
  8. Bretscher, MS (1973). "Membrane structure: some general principles". Science. 181 (5126): 622–629. Bibcode:1993Sci...261.1280B. doi:10.1126/science.8362242. PMID   8362242.
  9. Bretscher, MS; Munro, S (1993). "Cholesterol and the Golgi apparatus". Science. 261 (5126): 1280–1281. Bibcode:1993Sci...261.1280B. doi:10.1126/science.8362242. PMID   8362242.
  10. Taylor, RB; Duffus, WP; Raff, MC; de Petris, S (1971). "Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by an anti-immunoglobulin antibody". Nature New Biology. 233 (42): 225–229. doi:10.1038/newbio233225a0. PMID   20480991.
  11. Abercrombie, M; Heaysman, JE; Pegrum, SM (1970). "The locomotion of fibroblasts in culture. I. Movements of the leading edge". Exp Cell Res. 59 (3): 393–398. doi:10.1016/0014-4827(70)90646-4. PMID   4907703.
  12. Pearse, BM (1987). "Clathrin and coated vesicles". EMBO J. 6 (9): 2507–2512. doi:10.1002/j.1460-2075.1987.tb02536.x. PMC   553666 . PMID   2890519.
  13. Anderson, RG; Brown, MS; Goldstein, JL (1977). "Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts". Cell. 10 (3): 351–364. doi:10.1016/0092-8674(77)90022-8. PMID   191195. S2CID   25657719.
  14. Stern, PL; Bretscher, MS (1979). "Capping of exogenous Forssman glycolipid on cells". J Cell Biol. 82 (3): 829–833. doi:10.1083/jcb.82.3.829. PMC   2110488 . PMID   389939.
  15. Bretscher, MS (1984). "Endocytosis: relation to capping and cell locomotion". Science. 224 (4650): 681–686. Bibcode:1984Sci...224..681B. doi:10.1126/science.6719108. PMID   6719108.
  16. Bretscher, MS (1976). "Directed lipid flow in cell membranes". Nature. 260 (5546): 21–23. Bibcode:1976Natur.260...21B. doi:10.1038/260021a0. PMID   1264188. S2CID   4291806.
  17. Bretscher, MS (1983). "Distribution of receptors for transferrin and low density lipoprotein on the surface of giant HeLa cells". Proc Natl Acad Sci U S A. 80 (2): 454–458. Bibcode:1983PNAS...80..454B. doi: 10.1073/pnas.80.2.454 . PMC   393396 . PMID   6300844.
  18. Bretscher, MS (1996). "Getting membrane flow and the cytoskeleton to cooperate in moving cells". Cell. 87 (4): 601–606. doi: 10.1016/s0092-8674(00)81380-x . PMID   8929529. S2CID   14776455.
  19. Aguado-Velasco, C; Bretscher, MS (1999). "Circulation of the plasma membrane in Dictyostelium". Mol Biol Cell. 10 (12): 4419–4427. doi:10.1091/mbc.10.12.4419. PMC   25767 . PMID   10588667.
  20. Thompson, CR; Bretscher, MS (2002). "Cell polarity and locomotion, as well as endocytosis, depend on NSF". Development. 129 (18): 4185–4192. doi:10.1242/dev.129.18.4185. PMID   12183371.
  21. Barry, NP; Bretscher, MS (2010). "Dictyostelium amoebae and neutrophils can swim". Proc Natl Acad Sci U S A. 107 (25): 11376–11380. Bibcode:2010PNAS..10711376B. doi: 10.1073/pnas.1006327107 . PMC   2895083 . PMID   20534502.
  22. Bretscher, MS (2014). "Asymmetry of single cells and where that leads". Annu Rev Biochem. 83: 275–289. doi:10.1146/annurev-biochem-060713-035813. PMID   24437662.
  23. "Egon Bretscher profile". Atomic Heritage Foundation.

Books containing references to Mark Bretscher

See also

{{|978-1-903435-05-2}}