Martin Charles Golumbic | |
---|---|
Born | 1948 |
Alma mater | Pennsylvania State University, Columbia University |
Known for | Research on perfect graphs, graph sandwich problems, compiler optimization, and spatial-temporal reasoning |
Awards | Fellow of the European Association for Artificial Intelligence (2005), Elected to the Academia Europaea (2013), Lifetime Achievement and Service Award of the Israeli Association for Artificial Intelligence (2019) |
Scientific career | |
Fields | Mathematics, Computer science |
Institutions | University of Haifa, Bell Laboratories, IBM Research |
Doctoral advisor | Samuel Eilenberg |
Martin Charles Golumbic (born 1948) [1] is a mathematician and computer scientist known for his research on perfect graphs, graph sandwich problems, compiler optimization, and spatial-temporal reasoning. He is a professor emeritus of computer science at the University of Haifa, [2] and was the founder of the journal Annals of Mathematics and Artificial Intelligence.
Golumbic majored in mathematics at Pennsylvania State University, graduating in 1970 with bachelor's and master's degrees. [3] He completed his Ph.D. at Columbia University in 1975, with the dissertation Comparability Graphs and a New Matroid supervised by Samuel Eilenberg. [4]
He became an assistant professor in the Courant Institute of Mathematical Sciences of New York University from 1975 until 1980, when he moved to Bell Laboratories. From 1983 to 1992 he worked for IBM Research in Israel, and from 1992 to 2000 he was a professor of mathematics and computer science at Bar-Ilan University. He moved to the University of Haifa in 2000, where he founded the Caesarea Edmond Benjamin de Rothschild Institute for Interdisciplinary Applications of Computer Science. [3] [2]
In 1989, Golumbic founded the Bar-Ilan Symposium in Foundations of Artificial Intelligence, a leading artificial intelligence conference in Israel. [5] In 1990 Golumbic became the founding editor-in-chief of the journal Annals of Mathematics and Artificial Intelligence, published by Springer. [6]
Golumbic is a fellow of the European Association for Artificial Intelligence (2005). [7] He was elected to the Academia Europaea in 2013.
At the 2019 Bar-Ilan Symposium in Foundations of Artificial Intelligence, Golumbic was given the Lifetime Achievement and Service Award of the Israeli Association for Artificial Intelligence. [5]
In graph theory, an interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. It is the intersection graph of the intervals.
In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.
In the mathematical area of graph theory, a chordal graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle. Equivalently, every induced cycle in the graph should have exactly three vertices. The chordal graphs may also be characterized as the graphs that have perfect elimination orderings, as the graphs in which each minimal separator is a clique, and as the intersection graphs of subtrees of a tree. They are sometimes also called rigid circuit graphs or triangulated graphs: a chordal completion of a graph is typically called a triangulation of that graph.
In the mathematical discipline of graph theory, a feedback vertex set (FVS) of a graph is a set of vertices whose removal leaves a graph without cycles. Equivalently, each FVS contains at least one vertex of any cycle in the graph. The feedback vertex set number of a graph is the size of a smallest feedback vertex set. The minimum feedback vertex set problem is an NP-complete problem; it was among the first problems shown to be NP-complete. It has wide applications in operating systems, database systems, and VLSI chip design.
David Arthur Eppstein is an American computer scientist and mathematician. He is a distinguished professor of computer science at the University of California, Irvine. He is known for his work in computational geometry, graph algorithms, and recreational mathematics. In 2011, he was named an ACM Fellow.
In computational complexity, problems that are in the complexity class NP but are neither in the class P nor NP-complete are called NP-intermediate, and the class of such problems is called NPI. Ladner's theorem, shown in 1975 by Richard E. Ladner, is a result asserting that, if P ≠ NP, then NPI is not empty; that is, NP contains problems that are neither in P nor NP-complete. Since it is also true that if NPI problems exist, then P ≠ NP, it follows that P = NP if and only if NPI is empty.
Noga Alon is an Israeli mathematician and a professor of mathematics at Princeton University noted for his contributions to combinatorics and theoretical computer science, having authored hundreds of papers.
In graph theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable graphs, containment graphs, and divisor graphs. An incomparability graph is an undirected graph that connects pairs of elements that are not comparable to each other in a partial order.
In graph theory, a branch of mathematics, a split graph is a graph in which the vertices can be partitioned into a clique and an independent set. Split graphs were first studied by Földes and Hammer, and independently introduced by Tyshkevich and Chernyak, where they called these graphs "polar graphs".
In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor.
In graph theory, a trivially perfect graph is a graph with the property that in each of its induced subgraphs the size of the maximum independent set equals the number of maximal cliques. Trivially perfect graphs were first studied by but were named by Golumbic (1978); Golumbic writes that "the name was chosen since it is trivial to show that such a graph is perfect." Trivially perfect graphs are also known as comparability graphs of trees, arborescent comparability graphs, and quasi-threshold graphs.
In graph theory and computer science, the graph sandwich problem is a problem of finding a graph that belongs to a particular family of graphs and is "sandwiched" between two other graphs, one of which must be a subgraph and the other of which must be a supergraph of the desired graph.
Eliahu (Eli) Shamir is an Israeli mathematician and computer scientist, the Jean and Helene Alfassa Professor Emeritus of Computer Science at the Hebrew University of Jerusalem.
Ron Shamir is an Israeli professor of computer science known for his work in graph theory and in computational biology. He holds the Raymond and Beverly Sackler Chair in Bioinformatics, and is the founder and former head of the Edmond J. Safra Center for Bioinformatics at Tel Aviv University.
In the mathematical area of graph theory, a chordal bipartite graph is a bipartite graph B = (X,Y,E) in which every cycle of length at least 6 in B has a chord, i.e., an edge that connects two vertices that are a distance > 1 apart from each other in the cycle. A better name would be weakly chordal and bipartite since chordal bipartite graphs are in general not chordal as the induced cycle of length 4 shows.
Jorge Urrutia Galicia is a Mexican mathematician and computer scientist in the Institute of Mathematics of the National Autonomous University of Mexico (UNAM). His research primarily concerns discrete and computational geometry.
Arnon Avron is an Israeli mathematician and Professor at the School of Computer Science at Tel Aviv University. His research focuses on applications of mathematical logic to computer science and artificial intelligence.
Zvi Lotker is an Israeli computer scientist and communications systems engineer who works in the fields of digital humanities, artificial intelligence, distributed computing, network algorithms, and communication networks. He is an associate professor in the Alexander Kofkin Faculty of Engineering at Bar-Ilan University.
Helmut Alt is a German computer scientist whose research concerns graph algorithms and computational geometry. He is known for his work on matching geometric shapes, including methods for efficiently computing the Fréchet distance between shapes. He was also the first to use the German phrase "Algorithmische Geometrie" [algorithmic geometry] to refer to computational geometry. He is a professor of computer science at the Free University of Berlin.
Tali Kaufman is an Israeli theoretical computer scientist whose research topics have included property testing, expander graphs, coding theory, and randomized algorithms with sublinear time complexity. She is a professor of computer science at Bar-Ilan University, and a fellow of the Israel Institute for Advanced Studies.