Mass cytometry

Last updated
CyTOF mass cytometer. Mass cytometer.jpg
CyTOF mass cytometer.

Mass cytometry is a mass spectrometry technique based on inductively coupled plasma mass spectrometry and time of flight mass spectrometry used for the determination of the properties of cells (cytometry). [1] [2] In this approach, antibodies are conjugated with isotopically pure elements, and these antibodies are used to label cellular proteins. Cells are nebulized and sent through an argon plasma, which ionizes the metal-conjugated antibodies. The metal signals are then analyzed by a time-of-flight mass spectrometer. The approach overcomes limitations of spectral overlap in flow cytometry by utilizing discrete isotopes as a reporter system instead of traditional fluorophores which have broad emission spectra. [3]

Contents

Commercialization

Tagging technology and instrument development occurred at the University of Toronto and DVS Sciences, Inc. [1] [4] CyTOF (cytometry by time of flight) was initially commercialized by DVS Sciences in 2009. In 2014, Fluidigm acquired DVS Sciences [5] to become a reference company in single cell technology. [6] In 2022 Fluidigm received a capitol infusion and changed its name to Standard BioTools. [7] The CyTOF, CyTOF2, Helios (CyTOF3) and CyTOF XT [8] (4th generation) have been commercialized up to now. Fluidigm sells a variety of commonly used metal-antibody conjugates, and an antibody conjugation kit.

Imaging Mass Cytometry (IMC)

Imaging mass cytometry (IMC) is a relatively new imaging technique, emerged from previously available CyTOF technology (cytometry by time of flight), that combines mass spectrometry with UV laser ablation to generate pseudo images of tissue samples. [9] [10] This approach adds spatial resolution to the data, which enables simultaneous analysis of multiple cell markers at subcellular resolution and their spatial distribution in tissue sections. [9] [11] The IMC approach, in the same way as CyTOF , relies on detection of metal-tagged antibodies using time-of-flight mass spectrometry, allowing for quantification of up to 40 markers simultaneously. [12] [13]

Data analysis

CyTOF mass cytometry data is recorded in tables that list, for each cell, the signal detected per channel, which is proportional to the number of antibodies tagged with the corresponding channel's isotope bound to that cell. These data are formatted as FCS files, which are compatible with traditional flow cytometry software. Due to the high-dimensional nature of mass cytometry data, novel data analysis tools have been developed as well. [14]

Imaging Mass Cytometry data analysis has its specificity due to different nature of data obtained. In terms of data analysis, both IMC and CyTOF generate large datasets with high dimensionality that require specialized computational methods for analysis. However, data generated by IMC can be more challenging to analyze due to additional data complexity and need for specific tools and pipelines specific for digital image analysis, whereas the data generated by CyTOF is generally analyzed using conventional flow cytometry software. A comprehensive overview of IMC data analysis techniques has been given by Milosevic in. [15]

Advantages and disadvantages

Advantages include minimal overlap in metal signals meaning the instrument is theoretically capable of detecting 100 parameters per cell, entire cell signaling networks can be inferred organically without reliance on prior knowledge, and one well-constructed experiment produces large amounts of data. [3]

Disadvantages, in the case of CyTOF, include the practical flow rate is around 500 cells per second versus several thousand in flow cytometry and current reagents available limit cytometer use to around 50 parameters per cell. Additionally, mass cytometry is a destructive method and cells cannot be sorted for further analysis. In the case of IMC, the resolution of the data is relatively low (1μm2/pixel), the technique is as well destructive, acquiring of the data is also very slow, and it requires specialized expensive equipment and expertise.

Applications

Mass cytometry has research applications in medical fields including immunology, hematology, and oncology. It has been used in studies of hematopoiesis, [16] cell cycle, [17] cytokine expression, and differential signaling responses.

MC has been used in various research fields, such as cancer biology, immunology, and neuroscience, to provide a more comprehensive understanding of tissue architecture and cellular interactions. [18] [19] [20] [21] [22] [23]

Related Research Articles

<span class="mw-page-title-main">Flow cytometry</span> Lab technique in biology and chemistry

Flow cytometry (FC) is a technique used to detect and measure physical and chemical characteristics of a population of cells or particles.

<span class="mw-page-title-main">Lipidomics</span>

Lipidomics is the large-scale study of pathways and networks of cellular lipids in biological systems The word "lipidome" is used to describe the complete lipid profile within a cell, tissue, organism, or ecosystem and is a subset of the "metabolome" which also includes other major classes of biological molecules. Lipidomics is a relatively recent research field that has been driven by rapid advances in technologies such as mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, dual polarisation interferometry and computational methods, coupled with the recognition of the role of lipids in many metabolic diseases such as obesity, atherosclerosis, stroke, hypertension and diabetes. This rapidly expanding field complements the huge progress made in genomics and proteomics, all of which constitute the family of systems biology.

<span class="mw-page-title-main">Peptide mass fingerprinting</span> Analytical technique for protein identification

Peptide mass fingerprinting (PMF), also known as protein fingerprinting, is an analytical technique for protein identification in which the unknown protein of interest is first cleaved into smaller peptides, whose absolute masses can be accurately measured with a mass spectrometer such as MALDI-TOF or ESI-TOF. The method was developed in 1993 by several groups independently. The peptide masses are compared to either a database containing known protein sequences or even the genome. This is achieved by using computer programs that translate the known genome of the organism into proteins, then theoretically cut the proteins into peptides, and calculate the absolute masses of the peptides from each protein. They then compare the masses of the peptides of the unknown protein to the theoretical peptide masses of each protein encoded in the genome. The results are statistically analyzed to find the best match.

<span class="mw-page-title-main">Protein mass spectrometry</span> Application of mass spectrometry

Protein mass spectrometry refers to the application of mass spectrometry to the study of proteins. Mass spectrometry is an important method for the accurate mass determination and characterization of proteins, and a variety of methods and instrumentations have been developed for its many uses. Its applications include the identification of proteins and their post-translational modifications, the elucidation of protein complexes, their subunits and functional interactions, as well as the global measurement of proteins in proteomics. It can also be used to localize proteins to the various organelles, and determine the interactions between different proteins as well as with membrane lipids.

Mass spectrometry imaging (MSI) is a technique used in mass spectrometry to visualize the spatial distribution of molecules, as biomarkers, metabolites, peptides or proteins by their molecular masses. After collecting a mass spectrum at one spot, the sample is moved to reach another region, and so on, until the entire sample is scanned. By choosing a peak in the resulting spectra that corresponds to the compound of interest, the MS data is used to map its distribution across the sample. This results in pictures of the spatially resolved distribution of a compound pixel by pixel. Each data set contains a veritable gallery of pictures because any peak in each spectrum can be spatially mapped. Despite the fact that MSI has been generally considered a qualitative method, the signal generated by this technique is proportional to the relative abundance of the analyte. Therefore, quantification is possible, when its challenges are overcome. Although widely used traditional methodologies like radiochemistry and immunohistochemistry achieve the same goal as MSI, they are limited in their abilities to analyze multiple samples at once, and can prove to be lacking if researchers do not have prior knowledge of the samples being studied. Most common ionization technologies in the field of MSI are DESI imaging, MALDI imaging, secondary ion mass spectrometry imaging and Nanoscale SIMS (NanoSIMS).

<span class="mw-page-title-main">Ion-mobility spectrometry–mass spectrometry</span>

Ion mobility spectrometry–mass spectrometry (IMS-MS) is an analytical chemistry method that separates gas phase ions based on their interaction with a collision gas and their masses. In the first step, the ions are separated according to their mobility through a buffer gas on a millisecond timescale using an ion mobility spectrometer. The separated ions are then introduced into a mass analyzer in a second step where their mass-to-charge ratios can be determined on a microsecond timescale. The effective separation of analytes achieved with this method makes it widely applicable in the analysis of complex samples such as in proteomics and metabolomics.

<span class="mw-page-title-main">CyTOF</span>

Cytometry by time of flight, or CyTOF, is an application of mass cytometry used to quantify labeled targets on the surface and interior of single cells. CyTOF allows the quantification of multiple cellular components simultaneously using an ICP-MS detector.

<span class="mw-page-title-main">Single-cell analysis</span> Testbg biochemical processes and reactions in an individual cell

In the field of cellular biology, single-cell analysis and subcellular analysis is the study of genomics, transcriptomics, proteomics, metabolomics and cell–cell interactions at the single cell level. The concept of single-cell analysis originated in the 1970s. Before the discovery of heterogeneity, single-cell analysis mainly referred to the analysis or manipulation of an individual cell in a bulk population of cells at a particular condition using optical or electronic microscope. To date, due to the heterogeneity seen in both eukaryotic and prokaryotic cell populations, analyzing a single cell makes it possible to discover mechanisms not seen when studying a bulk population of cells. Technologies such as fluorescence-activated cell sorting (FACS) allow the precise isolation of selected single cells from complex samples, while high throughput single cell partitioning technologies, enable the simultaneous molecular analysis of hundreds or thousands of single unsorted cells; this is particularly useful for the analysis of transcriptome variation in genotypically identical cells, allowing the definition of otherwise undetectable cell subtypes. The development of new technologies is increasing our ability to analyze the genome and transcriptome of single cells, as well as to quantify their proteome and metabolome. Mass spectrometry techniques have become important analytical tools for proteomic and metabolomic analysis of single cells. Recent advances have enabled quantifying thousands of protein across hundreds of single cells, and thus make possible new types of analysis. In situ sequencing and fluorescence in situ hybridization (FISH) do not require that cells be isolated and are increasingly being used for analysis of tissues.

Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires extensive use of and contributes to the development of techniques from computational statistics and machine learning. Flow cytometry and related methods allow the quantification of multiple independent biomarkers on large numbers of single cells. The rapid growth in the multidimensionality and throughput of flow cytometry data, particularly in the 2000s, has led to the creation of a variety of computational analysis methods, data standards, and public databases for the sharing of results.

<span class="mw-page-title-main">Dana Pe'er</span> Bioinformatician

Dana Pe'er, Chair and Professor in Computational and Systems Biology Program at Sloan Kettering Institute is a researcher in computational systems biology. A Howard Hughes Medical Institute (HHMI) Investigator since 2021, she was previously a professor at Columbia Department of Biological Sciences. Pe'er's research focuses on understanding the organization, function and evolution of molecular networks, particularly how genetic variations alter the regulatory network and how these genetic variations can cause cancer.

An imaging cycler microscope (ICM) is a fully automated (epi)fluorescence microscope which overcomes the spectral resolution limit resulting in parameter- and dimension-unlimited fluorescence imaging. The principle and robotic device was described by Walter Schubert in 1997 and has been further developed with his co-workers within the human toponome project. The ICM runs robotically controlled repetitive incubation-imaging-bleaching cycles with dye-conjugated probe libraries recognizing target structures in situ (biomolecules in fixed cells or tissue sections). This results in the transmission of a randomly large number of distinct biological informations by re-using the same fluorescence channel after bleaching for the transmission of another biological information using the same dye which is conjugated to another specific probe, a.s.o. Thereby noise-reduced quasi-multichannel fluorescence images with reproducible physical, geometrical, and biophysical stabilities are generated. The resulting power of combinatorial molecular discrimination (PCMD) per data point is given by 65,536k, where 65,536 is the number of grey value levels (output of a 16-bit CCD camera), and k is the number of co-mapped biomolecules and/or subdomains per biomolecule(s). High PCMD has been shown for k = 100, and in principle can be expanded for much higher numbers of k. In contrast to traditional multichannel–few-parameter fluorescence microscopy (panel a in the figure) high PCMDs in an ICM lead to high functional and spatial resolution (panel b in the figure). Systematic ICM analysis of biological systems reveals the supramolecular segregation law that describes the principle of order of large, hierarchically organized biomolecular networks in situ (toponome). The ICM is the core technology for the systematic mapping of the complete protein network code in tissues (human toponome project). The original ICM method includes any modification of the bleaching step. Corresponding modifications have been reported for antibody retrieval and chemical dye-quenching debated recently. The Toponome Imaging Systems (TIS) and multi-epitope-ligand cartographs (MELC) represent different stages of the ICM technological development. Imaging cycler microscopy received the American ISAC best paper award in 2008 for the three symbol code of organized proteomes.

<span class="mw-page-title-main">Single-cell variability</span>

In cell biology, single-cell variability occurs when individual cells in an otherwise similar population differ in shape, size, position in the cell cycle, or molecular-level characteristics. Such differences can be detected using modern single-cell analysis techniques. Investigation of variability within a population of cells contributes to understanding of developmental and pathological processes,

<span class="mw-page-title-main">Standard BioTools</span>

Standard BioTools Inc., previously known as Fluidigm Corp., offers analytical mass cytometry systems for flow cytometry and tissue imaging, along with associated assays and reagents, as well as an automated genomic analysis instrument and a variety of microfluidic arrays, or integrated fluidic circuits (IFCs), and consumables with fully kitted reagents. Custom assays and services are available with all systems and applications.

CITE-Seq is a method for performing RNA sequencing along with gaining quantitative and qualitative information on surface proteins with available antibodies on a single cell level. So far, the method has been demonstrated to work with only a few proteins per cell. As such, it provides an additional layer of information for the same cell by combining both proteomics and transcriptomics data. For phenotyping, this method has been shown to be as accurate as flow cytometry by the groups that developed it. It is currently one of the main methods, along with REAP-Seq, to evaluate both gene expression and protein levels simultaneously in different species.

Tissue image cytometry or tissue cytometry is a method of digital histopathology and combines classical digital pathology and computational pathology into one integrated approach with solutions for all kinds of diseases, tissue and cell types as well as molecular markers and corresponding staining methods to visualize these markers. Tissue cytometry uses virtual slides as they can be generated by multiple, commercially available slide scanners, as well as dedicated image analysis software – preferentially including machine and deep learning algorithms. Tissue cytometry enables cellular analysis within thick tissues, retaining morphological and contextual information, including spatial information on defined cellular subpopulations. In this process, a tissue sample, either formalin-fixed paraffin-embedded (FFPE) or frozen tissue section, also referred to as “cryocut”, is labelled with either immunohistochemistry(IHC) or immunofluorescent markers, scanned with high-throughput slide scanners and the data gathered from virtual slides is processed and analyzed using software that is able to identify individual cells in tissue context automatically and distinguish between nucleus and cytoplasm for each cell. Additional algorithms can identify cellular membranes, subcellular structures and/or multicellular tissue structures.

Garry P. Nolan is an American immunologist, academic, inventor, and business executive. He holds the Rachford and Carlota A. Harris Professor Endowed Chair in the Department of Pathology at Stanford University School of Medicine. Nolan founded biotechnology companies, wrote numerous medical research papers, and has been active in ufology.

<span class="mw-page-title-main">Dmitry Bandura</span> Canadian Scientist, Co-inventor of Mass Cytometry technology

Dmitry Bandura is a Soviet-born Canadian scientist, notable for being one of the co-inventors of the Mass cytometry technology. Bandura co-founded DVS Sciences in 2004 along with Drs Vladimir Baranov, Scott D. Tanner, and Olga Ornatsky.

<span class="mw-page-title-main">Vladimir Baranov</span>

Vladimir Baranov is a Soviet born Canadian scientist and one of the original co-inventors of Mass cytometry technology...

<span class="mw-page-title-main">Scott D. Tanner</span> Canadian scientist

Scott Tanner is a Canadian scientist, inventor, and entrepreneur. His areas of expertise include mass spectroscopy, especially inductively coupled plasma mass spectrometry (ICP-MS), and mass cytometry.

<span class="mw-page-title-main">Olga Ornatsky</span> Canadian Scientist

Olga Ornatsky is a Soviet born, Canadian scientist. Ornatsky co-founded DVS Sciences in 2004 along with Dmitry Bandura, Vladimir Baranov and Scott D. Tanner.

References

  1. 1 2 Dmitry Bandura; Vladimir Baranov; Olga Ornatsky; Scott D. Tanner; Kinach R; Lou X; Pavlov S; Vorobiev S; Dick JE; Antonov A (2009). "Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry". Analytical Chemistry. 81 (16): 6813–6822. doi:10.1021/ac901049w. PMID   19601617.
  2. Di Palma, Serena; Bodenmiller, Bernd (2015). "Unraveling cell populations in tumors by single-cell mass cytometry". Current Opinion in Biotechnology. 31: 122–129. doi:10.1016/j.copbio.2014.07.004. ISSN   0958-1669. PMID   25123841.
  3. 1 2 Spitzer, Matthew H.; Nolan, Garry P. (2016). "Mass Cytometry: Single Cells, Many Features". Cell. 165 (4): 780–791. doi:10.1016/j.cell.2016.04.019. ISSN   0092-8674. PMC   4860251 . PMID   27153492.
  4. Ornatsky, O; Bandura D; Baranov V; Nitz M; Winnick MA; Tanner S (30 September 2010). "Highly multiparametric analysis by mass cytometry". Journal of Immunological Methods. 361 (1–2): 1–20. doi:10.1016/j.jim.2010.07.002. PMID   20655312.
  5. "Fluidigm | Press Releases | FLUIDIGM TO ACQUIRE DVS SCIENCES". www.fluidigm.com. Retrieved 2015-11-11.
  6. "An Open Letter to Customers of Fluidigm and DVS Sciences, Inc" (PDF). Fluidigm and DVS Sciences, Inc. 13 February 2014. Retrieved 4 July 2014.
  7. "Standard BioTools| Press Releases | Fluigigm Capital Infusion". www.globenewswire.com. Retrieved 2022-01-22.
  8. "CyTOF XT". StandardBio. 2021-05-21. Retrieved 8 December 2022.
  9. 1 2 Giesen, Charlotte; Wang, Hao A O; Schapiro, Denis; Zivanovic, Nevena; Jacobs, Andrea; Hattendorf, Bodo; Schüffler, Peter J; Grolimund, Daniel; Buhmann, Joachim M; Brandt, Simone; Varga, Zsuzsanna; Wild, Peter J; Günther, Detlef; Bodenmiller, Bernd (2014). "Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry". Nature Methods. 11 (4): 417–422. doi:10.1038/nmeth.2869. ISSN   1548-7091. PMID   24584193. S2CID   205422590.
  10. Chang, Qing; Ornatsky, Olga I.; Siddiqui, Iram; Loboda, Alexander; Baranov, Vladimir I.; Hedley, David W. (2017). "Imaging Mass Cytometry". Cytometry Part A. 91 (2): 160–169. doi: 10.1002/cyto.a.23053 . PMID   28160444. S2CID   29523347.
  11. Schapiro, Denis; Jackson, Hartland W; Raghuraman, Swetha; Fischer, Jana R; Zanotelli, Vito R T; Schulz, Daniel; Giesen, Charlotte; Catena, Raúl; Varga, Zsuzsanna; Bodenmiller, Bernd (2017). "histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data". Nature Methods. 14 (9): 873–876. doi:10.1038/nmeth.4391. ISSN   1548-7091. PMC   5617107 . PMID   28783155.
  12. Ijsselsteijn, Marieke E.; van der Breggen, Ruud; Farina Sarasqueta, Arantza; Koning, Frits; de Miranda, Noel F. C. C. (2019-10-29). "A 40-Marker Panel for High Dimensional Characterization of Cancer Immune Microenvironments by Imaging Mass Cytometry". Frontiers in Immunology. 10: 2534. doi: 10.3389/fimmu.2019.02534 . ISSN   1664-3224. PMC   6830340 . PMID   31736961.
  13. Han, Guojun; Chen, Shih-Yu; Gonzalez, Veronica D.; Zunder, Eli R.; Fantl, Wendy J.; Nolan, Garry P. (2017). "Atomic mass tag of bismuth-209 for increasing the immunoassay multiplexing capacity of mass cytometry". Cytometry Part A. 91 (12): 1150–1163. doi:10.1002/cyto.a.23283. ISSN   1552-4922. PMC   5802970 . PMID   29205767. S2CID   205731719.
  14. Krishnaswamy, Smita; Spitzer, Matthew; Mingueneau, Michael; Bendall, Sean; Litvin, Oren; Stone, Erica; Pe'er, Dana; Nolan, Garry (28 Nov 2014). "Conditional density-based analysis of T cell signaling in single-cell data". Science. 346 (6213): 1250689. doi:10.1126/science.1250689. PMC   4334155 . PMID   25342659.
  15. Milosevic, Vladan (2023). "Different approaches to Imaging Mass Cytometry data analysis". Bioinformatics Advances. 3: vbad046. doi:10.1093/bioadv/vbad046. ISSN   2635-0041. PMC   10115470 . PMID   37092034.
  16. Bendall SC, Simonds EF, Qiu P, Amir El-ad D, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe'er D, Tanner SD, Nolan GP (2011). "Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum". Science. 332 (6030): 687–96. Bibcode:2011Sci...332..687B. doi:10.1126/science.1198704. PMC   3273988 . PMID   21551058.
  17. Behbehani, Gregory K.; Bendall, Sean C.; Clutter, Matthew R.; Fantl, Wendy J.; Nolan, Garry P. (2012-07-01). "Single-cell mass cytometry adapted to measurements of the cell cycle". Cytometry Part A. 81 (7): 552–566. doi:10.1002/cyto.a.22075. ISSN   1552-4930. PMC   3667754 . PMID   22693166.
  18. Damond, Nicolas; Engler, Stefanie; Zanotelli, Vito R.T.; Schapiro, Denis; Wasserfall, Clive H.; Kusmartseva, Irina; Nick, Harry S.; Thorel, Fabrizio; Herrera, Pedro L.; Atkinson, Mark A.; Bodenmiller, Bernd (2019). "A Map of Human Type 1 Diabetes Progression by Imaging Mass Cytometry". Cell Metabolism. 29 (3): 755–768.e5. doi:10.1016/j.cmet.2018.11.014. PMC   6821395 . PMID   30713109.
  19. Ramaglia, Valeria; Sheikh-Mohamed, Salma; Legg, Karen; Park, Calvin; Rojas, Olga L; Zandee, Stephanie; Fu, Fred; Ornatsky, Olga; Swanson, Eric C; Pitt, David; Prat, Alexandre; McKee, Trevor D; Gommerman, Jennifer L (2019-08-01). "Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry". eLife. 8: e48051. doi: 10.7554/eLife.48051 . ISSN   2050-084X. PMC   6707785 . PMID   31368890.
  20. Jackson, Hartland W.; Fischer, Jana R.; Zanotelli, Vito R. T.; Ali, H. Raza; Mechera, Robert; Soysal, Savas D.; Moch, Holger; Muenst, Simone; Varga, Zsuzsanna; Weber, Walter P.; Bodenmiller, Bernd (2020-02-27). "The single-cell pathology landscape of breast cancer". Nature. 578 (7796): 615–620. Bibcode:2020Natur.578..615J. doi:10.1038/s41586-019-1876-x. ISSN   0028-0836. PMID   31959985. S2CID   256820400.
  21. Moldoveanu, Dan; Ramsay, LeeAnn; Lajoie, Mathieu; Anderson-Trocme, Luke; Lingrand, Marine; Berry, Diana; Perus, Lucas J.M.; Wei, Yuhong; Moraes, Cleber; Alkallas, Rached; Rajkumar, Shivshankari; Zuo, Dongmei; Dankner, Matthew; Xu, Eric Hongbo; Bertos, Nicholas R. (2022). "Spatially mapping the immune landscape of melanoma using imaging mass cytometry". Science Immunology. 7 (70): eabi5072. doi:10.1126/sciimmunol.abi5072. ISSN   2470-9468. PMID   35363543. S2CID   247865180.
  22. Hoch, Tobias; Schulz, Daniel; Eling, Nils; Gómez, Julia Martínez; Levesque, Mitchell P.; Bodenmiller, Bernd (2022). "Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy". Science Immunology. 7 (70): eabk1692. doi:10.1126/sciimmunol.abk1692. ISSN   2470-9468. PMID   35363540. S2CID   247865735.
  23. Liu, Zehan; Xun, Jing; Liu, Shuangqing; Wang, Botao; Zhang, Aimin; Zhang, Lanqiu; Wang, Ximo; Zhang, Qi (2022). "Imaging mass cytometry: High-dimensional and single-cell perspectives on the microenvironment of solid tumours". Progress in Biophysics and Molecular Biology. 175: 140–146. doi:10.1016/j.pbiomolbio.2022.10.003. PMID   36252872. S2CID   252961111.